5.在△ABC中,角A、B、C所對(duì)應(yīng)邊分別為a,b,c,已知$\overrightarrow{m}$=(2cos$\frac{C}{2}$,sinC),$\overrightarrow{n}$=(2sinC,cos$\frac{C}{2}$),且$\overrightarrow{m}$∥$\overrightarrow{n}$.
(1)求角C的大小;
(2)若a2=3b2+c2,求tanA的值.

分析 (1)運(yùn)用向量共線的坐標(biāo)表示,結(jié)合二倍角公式和同角公式,即可求得;
(2)由余弦定理和正弦定理,結(jié)合兩角和差的正弦公式,化簡(jiǎn)整理,即可得到.

解答 解:(1)由題意,$\overrightarrow{m}$∥$\overrightarrow{n}$,可得
2cos2$\frac{C}{2}$=2sin2C,即為1+cosC=2(1-cos2C),
可得cosC=$\frac{1}{2}$,(0<C<π),
解得C=$\frac{π}{3}$;
(2)由余弦定理可得,c2=a2+b2-2abcos$\frac{π}{3}$,
即有c2=a2+b2-ab,
又a2=3b2+c2,則4b2=ab,
即為a=4b,
由正弦定理,可得sinA=4sinB,
即sinA=4sin(A+$\frac{π}{3}$)=4($\frac{1}{2}$sinA+$\frac{\sqrt{3}}{2}$cosA),
即有-sinA=2$\sqrt{3}$cosA,
則tanA=$\frac{sinA}{cosA}$=-2$\sqrt{3}$.

點(diǎn)評(píng) 本題考查向量的共線的坐標(biāo)表示,考查正弦定理和余弦定理的運(yùn)用,同時(shí)考查三角函數(shù)的化簡(jiǎn)求值,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.化簡(jiǎn).
(1)(3a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{4}}$)(-8a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{2}}$)÷(-4a${\;}^{\frac{1}{6}}$b${\;}^{\frac{3}{4}}$)
(2)$\frac{{x}^{-2}+{y}^{-2}}{{x}^{-\frac{2}{3}}+{y}^{-\frac{2}{3}}}$-$\frac{{x}^{-2}-{y}^{-2}}{{x}^{-\frac{2}{3}}-{y}^{-\frac{2}{3}}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知定義在R上的函數(shù)f(x),對(duì)任意x,y∈R都有f(x+y)=f(x)+f(y),且f(x)是R上的增函數(shù).
(I)求證:函數(shù)f(x)是R上的奇函數(shù);
(II)若不等式f(k•2x)+f(2x-4x-2)<0對(duì)任意x∈R恒成立,求實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.實(shí)數(shù)x,y滿(mǎn)足條件$\left\{\begin{array}{l}{x+2y≤8}\\{0≤x≤4}\\{0≤y≤3}\end{array}\right.$,則2x+5y的最大值是19.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.若(2x+1)(x-2)5=a0+a1x+…+a6x6,則a0+a1=-16.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知y=sin($\frac{1}{2}x$+$\frac{π}{3}$),x∈R.
(1)求函數(shù)y的最大值及y取最大值時(shí)x的集合;
(2)求函數(shù)y的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=sin(2x+φ),其中φ為實(shí)數(shù),若$f(x)≤|{f(\frac{π}{3})}|$對(duì)于任意x∈R恒成立,且$f(\frac{π}{2})>f(π)$,則$f(\frac{5π}{12})$的值為(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.不等式-x2-x+2≥0的解集為( 。
A.{x|-1≤x≤2}B.{x|x≥2或x≤1}C.{x|-2≤x≤1}D.{x|x≥1或x≤-2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.定義在R上的函數(shù)f(x)滿(mǎn)足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,求f(0)和f(-2)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案