如圖所示,程序框圖輸出的所有實數(shù)對(x,y)所對應(yīng)的點都在函數(shù)( 。
A、y=x+1的圖象上
B、y=2x的圖象上
C、y=2x的圖象上
D、y=2x-1的圖象上
考點:程序框圖
專題:算法和程序框圖
分析:依程序框圖可知輸出的點為(1,1)、(2,2)、(3,4),只要驗證即可選出答案.
解答: 解:依程序框圖可知輸出的點為(1,1)、(2,2)、(3,4),經(jīng)驗證可知四個點皆滿足y=2x-1,
故選D.
點評:本題主要考查了程序框圖和算法,理解循環(huán)結(jié)構(gòu)的功能和判斷框的條件是解決問題的關(guān)鍵,屬于基本知識的考查.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|2x-a|+|2x+3|,g(x)=|x-1|+2.   
(1)當a=1,不等式f(x)>m恒成立,求實數(shù)的取值范圍;
(2)若對任意x1∈R,都有x2∈R使f(x1)=g(x2)成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等比數(shù)列{an}的前三項的和為
3
4
,前三項的積為-
1
8

(Ⅰ)求等比數(shù)列{an}的通項公式;
(Ⅱ)若a2,a3,a1成等差數(shù)列,設(shè)bn=(2n+1)an,求數(shù)列{bn}的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義在R上的函數(shù)f(x)滿足f(x)+f′(x)>1,f(0)=4,則不等式f(x)>
3
ex
+1(e為自然對數(shù)的底數(shù))的解集為( 。
A、(0,+∞)
B、(-∞,0)∪(3,+∞)
C、(-∞,0)∪(0,+∞)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線C:y2=4x,直線l過點T(t,0)且與拋物線相交于A、B兩點,O為坐標原點,若∠AOB為銳角,則t的取值范圍是( 。
A、0<t<4
B、0<t<2
C、t≥2
D、t>4或t<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(1,-1),
b
=(-2,t),若(2
a
-
b
)⊥
a
,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
3x-1x≤1
f(x-1)+2x>1
,則方程f(x)=2x在[0,2015]內(nèi)的根的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1-
1
x
)(3x+2)5的展開式中的常數(shù)項為( 。
A、210B、-240
C、32D、-208

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2aex(a>0,e為自然對數(shù)的底數(shù))的圖象與直線x=0的交點為M,函數(shù)g(x)=ln
x
a
(a>0)的圖象與直線y=0的交點為N,|MN|恰好是點M到函數(shù)g(x)=ln
x
a
(a>0)圖象上的最小值,則實數(shù)a的值是
 

查看答案和解析>>

同步練習(xí)冊答案