3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,則f(-$\frac{3}{2}$)=$\sqrt{2}$.

分析 利用分段函數(shù)的性質(zhì)即可得出.

解答 解:∵函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,
則f(-$\frac{3}{2}$)=$f(-\frac{3}{2}+1)$=$f(-\frac{1}{2})$=$f(-\frac{1}{2}+1)$=$f(\frac{1}{2})$=$\sqrt{2}$.
故答案為:$\sqrt{2}$.

點(diǎn)評 本題考查了分段函數(shù)的性質(zhì),考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.設(shè)向量$\overrightarrow m=(4cosx,1)$$\overrightarrow n=(sin(x+\frac{π}{6}),-1)$,函數(shù)$g(x)=\overrightarrow m•\overrightarrow n$.
(Ⅰ)若ω是函數(shù)y=g(x)在$[{0,\frac{π}{2}}]$上的零點(diǎn),求sinω的值;
(Ⅱ)設(shè)$α∈(0,\frac{π}{2}),β∈(\frac{π}{2},π)$,$g(\frac{α}{2}-\frac{π}{6})=\frac{6}{5},g(\frac{β}{2})=-\frac{24}{13}$,求sin(α+β)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+4a,x<0}\\{{a}^{x}+1,x≥0}\end{array}\right.$(a>0且a≠1)是R上的減函數(shù),則a的取值范圍是( 。
A.(0,1)B.[$\frac{1}{2}$,1)C.(0,$\frac{1}{3}$]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)$f(x)=\frac{x}{x-2}+cos\frac{π}{4}x$在[0,2)上的最大值為a,在(2,4]上的最小值為b,則a+b=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.設(shè)向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當(dāng)x∈(0,$\frac{π}{2}$)時(shí),求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.袋中有形狀、大小都相同的4個(gè)球,其中2個(gè)紅球,2個(gè)白球.從中隨機(jī)一次摸出2個(gè)球,則這2個(gè)球中至少有1個(gè)白球的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知sin$α=\frac{1}{3}$,α是第二象限角,則sin2α+cos2α=( 。
A.$\frac{7-4\sqrt{2}}{9}$B.$\frac{2\sqrt{2}-1}{3}$C.$\frac{7-3\sqrt{2}}{9}$D.$\frac{2\sqrt{3}-1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.某保險(xiǎn)公司有款保險(xiǎn)產(chǎn)品的歷史收益率(收益率=利潤÷保費(fèi)收入)的頻率分布直方圖如圖所示:
(1)試估計(jì)這款保險(xiǎn)產(chǎn)品的收益率的平均值;
(Ⅱ)設(shè)每份保單的保費(fèi)在20元的基礎(chǔ)上每增加x元,對應(yīng)的銷量y(萬份),從歷史銷售記錄中抽樣得到如下5組x與y的對應(yīng)數(shù)據(jù):
X(元)2530384552
銷售量y(萬份)7.57.16.05.64.8
由上表,知x與y有較強(qiáng)的線性相關(guān)關(guān)系,且據(jù)此計(jì)算出的回歸方程為$\widehat{y}$=10.0-bx.
(i)求參數(shù)b的估計(jì)值;
(ii)若把回歸方程$\widehat{y}$=10.0-bx當(dāng)作y與x的線性關(guān)系,用(Ⅰ)中求出的收益率的平均值作為此產(chǎn)品的收益率,試問每份保單的保費(fèi)定為多少元時(shí)此產(chǎn)品可獲得最大利潤,并求出該最大利潤.注:保險(xiǎn)產(chǎn)品的保費(fèi)收入=每份保單的保費(fèi)×銷量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.?dāng)?shù)列{an+1}是各項(xiàng)均正的等比數(shù)列,a1=1,a3=13-2a2則數(shù)列{an}的前n項(xiàng)和Sn為( 。
A.Sn=2n-2B.Sn=2n+1-2-nC.Sn=2n-1-nD.Sn=2n-1

查看答案和解析>>

同步練習(xí)冊答案