18.設向量$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),函數(shù)f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$.
(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(2)當x∈(0,$\frac{π}{2}$)時,求函數(shù)f(x)的值域.

分析 (1)利用向量數(shù)量積公式化簡函數(shù),結合正弦函數(shù)的單調(diào)增區(qū)間,可得f(x)的單調(diào)增區(qū)間;
(2)求出(2x-$\frac{π}{6}$)的范圍,從而確定f(x)的范圍,化簡函數(shù),可得函數(shù)的值域.

解答 解:(1)∵$\overrightarrow{m}$=(sinx,-1),$\overrightarrow{n}$=($\sqrt{3}$cosx,-$\frac{1}{2}$),
∴f(x)=($\overrightarrow{m}$+$\overrightarrow{n}$)•$\overrightarrow{m}$=(sinx+$\sqrt{3}$cosx,-$\frac{3}{2}$)•(sinx,-1)
=sin2x+$\sqrt{3}$sinxcos+$\frac{3}{2}$=$\frac{1}{2}$(1-cos2x)+$\frac{\sqrt{3}}{2}$sin2x+$\frac{3}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x)+2
=sin(2x-$\frac{π}{6}$)+2,
由2kπ-$\frac{π}{2}$≤2x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,
解得:kπ-$\frac{π}{6}$≤x≤kπ+$\frac{π}{3}$,
故函數(shù)的遞增區(qū)間是[kπ-$\frac{π}{6}$,kπ+$\frac{π}{3}$];
(2)∵x∈(0,$\frac{π}{2}$),
∴2x-$\frac{π}{6}$∈(-$\frac{π}{6}$,$\frac{5π}{6}$),
故sin(2x-$\frac{π}{6}$)的最大值是1,sin(2x-$\frac{π}{6}$)>sin(-$\frac{π}{6}$)=-$\frac{1}{2}$,
故函數(shù)的最大值是3,最小值大于$\frac{3}{2}$,
即函數(shù)的值域是($\frac{3}{2}$,3].

點評 本題考查向量知識的運用,考查三角函數(shù)的化簡,考查學生分析解決問題的能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

12.若關于x的方程$\frac{lnx}{x}$-a=0(e為自然對數(shù)的底數(shù))有實數(shù)根,則實數(shù)a的取值范圍是(-∞,$\frac{1}{e}$].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若X~B(n,$\frac{1}{3}$),且D(X)=$\frac{2}{3}$,則P(0≤X≤2)等于( 。
A.$\frac{1}{9}$B.$\frac{8}{9}$C.$\frac{26}{27}$D.$\frac{1}{27}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若cos(α$+\frac{4π}{15}$)=$\frac{4}{5}$,則sin(2α$+\frac{31π}{30}$)=( 。
A.$\frac{3}{5}$B.$\frac{7}{25}$C.$\frac{3}{4}$D.-$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.設函數(shù)f(x)=$\frac{{\sqrt{3}}}{2}-\sqrt{3}{sin^2}$ωx-sinωxcosωx(ω>0),且y=f(x)的圖象的一個對稱中心到最近的對稱軸的距離為$\frac{π}{4}$,則f(x)在區(qū)間$[-\frac{π}{4},0]$上的最大值為1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{f(x+1),(x≤0)}\\{{2}^{x},(x>0)}\end{array}\right.$,則f(-$\frac{3}{2}$)=$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知雙曲線$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{^{2}}=1$(b>0),以原點為圓心,雙曲線的實半軸長為半徑的圓與雙曲線的兩條漸近線相交于A、B、C、D四點,四邊形ABCD的面積為2b,則雙曲線方程為( 。
A.$\frac{{x}^{2}}{4}-\frac{3{y}^{2}}{4}=1$B.$\frac{{x}^{2}}{4}-\frac{4{y}^{2}}{3}=1$C.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{8}=1$D.$\frac{{x}^{2}}{4}-\frac{{y}^{2}}{12}=1$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知a=0.92,b=20.9,c=log20.9,則a,b,c的大小關系為( 。
A.b<a<cB.c<a<bC.c<b<aD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.在平面直角坐標系中,圓C的參數(shù)方程為$\left\{\begin{array}{l}{x=2(1+cosα)}\\{y=2sinα}\end{array}$(α為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,已知點P的極坐標為(ρ0,$\frac{π}{2}$).
(1)求圓C的極坐標方程;
(2)過點P作圓C的切線,切點分別為A,B兩點,且∠APB=120°,求ρ0

查看答案和解析>>

同步練習冊答案