9.已知數(shù)列{an}的前n項(xiàng)和Sn滿(mǎn)足Sn+an=2n+1,
(1)寫(xiě)出a1,a2,a3并猜想an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明(1)中的猜想.

分析 (1)利用Sn+an=2n+1,代入計(jì)算,可得結(jié)論,猜想an=2-$\frac{1}{{2}^{n}}$(n∈N*).
(2)用歸納法進(jìn)行證明,檢驗(yàn)n=1時(shí)等式成立,假設(shè)n=k時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立.

解答 解:(1)由Sn+an=2n+1得a1=$\frac{3}{2}$,a2=$\frac{7}{4}$,a3=$\frac{15}{8}$,
故猜想an=$\frac{{2}^{n+1}-1}{{2}^{n}}$=2-$\frac{1}{{2}^{n}}$(n∈N*).
(2)證明①當(dāng)n=1時(shí)a1=$\frac{3}{2}$,結(jié)論成立,
②假設(shè)當(dāng)n=k時(shí)結(jié)論成立,即ak=2-$\frac{1}{{2}^{k}}$,
則當(dāng)n=k+1時(shí),ak+1=Sk+1-Sk=2(k+1)+1-ak+1-(2k+1-a(2k+1-ak))
∴2ak+1=ak+2=4-$\frac{1}{{2}^{k}}$,∴ak+1=2-$\frac{1}{{2}^{k+1}}$,即當(dāng)n=k+1時(shí)結(jié)論成立.
由①②知對(duì)于任何正整數(shù)n,結(jié)論成立.

點(diǎn)評(píng) 此題主要考查歸納法的證明,歸納法一般三個(gè)步驟:(1)驗(yàn)證n=1成立;(2)假設(shè)n=k成立;(3)利用已知條件證明n=k+1也成立,從而得證,這是數(shù)列的通項(xiàng)一種常用求解的方法

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=a(|sinx|+|cosx|)+4sin2x+9,若$f({\frac{9π}{4}})=13-9\sqrt{2}$.
(1)求a的值;
(2)求f(x)的最小正周期(不需證明最小性);
(3)是否存在正整數(shù)n,使得f(x)=0在區(qū)間$[{0\;,\;\;\frac{nπ}{2}})$內(nèi)恰有2015個(gè)根.若存在,求出n的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.過(guò)點(diǎn)P(1,0)且與直線2x+y-5=0平行的直線的方程為2x+y-2=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)f(x)=$f(x)=\left\{\begin{array}{l}{x+2(x≤-1)}\\{{x}^{2}(-1<x<2)}\\{2x(x≥2)}\end{array}\right.$.若f(x)=3.則x的值為( 。
A.1B.$\sqrt{3}$C.-$\sqrt{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)f(x)的導(dǎo)函數(shù)為f′(x),且函數(shù)f(x)=x2+ax•f′(1)的圖象在點(diǎn)(1,f(1))處的切線斜率為-2,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知sin($\frac{π}{3}$+a)=$\frac{5}{13}$,且a∈($\frac{π}{6}$,$\frac{2π}{3}$),則sin($\frac{π}{12}$+a)的值是( 。
A.$\frac{17\sqrt{2}}{26}$B.$\frac{-7\sqrt{2}}{26}$C.-$\frac{17\sqrt{2}}{26}$D.$\frac{7\sqrt{2}}{26}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知集合A={x|y=ln(x-a)},B={-2,2,3},A∩B=B,則實(shí)數(shù)a的取值范圍是( 。
A.(-2,+∞)B.(3,+∞)C.(-∞,-2)D.(-∞,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,設(shè)橢圓$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,右頂點(diǎn)為A,上頂點(diǎn)為B,離心率為e.橢圓上一點(diǎn)C滿(mǎn)足:C在x軸上方,且CF1⊥x軸.
(1)若OC∥AB,求e的值;
(2)連結(jié)CF2并延長(zhǎng)交橢圓于另一點(diǎn)D若$\frac{1}{2}$≤e≤$\frac{\sqrt{2}}{2}$,求$\frac{|C{F}_{2}|}{|{F}_{2}D|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.經(jīng)過(guò)3小時(shí)35分鐘,時(shí)針與分針轉(zhuǎn)過(guò)的度數(shù)之差是( 。
A.1182.5°B.-1182.5°C.1182.3°D.-1182.3°

查看答案和解析>>

同步練習(xí)冊(cè)答案