【題目】先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b.

(1)求直線ax+by+5=0與圓x2+y2=1相切的概率;

(2)將a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的概率.

【答案】(1)(2)

【解析】

試題分析:本題考查的知識點是古典概型,我們要列出一枚骰子連擲兩次先后出現(xiàn)的點數(shù)所有的情況個數(shù)

(1)再根求出滿足條件直線ax+by+5=0與圓的事件個數(shù),然后代入古典概型公式即可求解;

(2)再根求出滿足條件a,b,5的值分別作為三條線段的長,求這三條線段能圍成等腰三角形的事件個數(shù),然后代入古典概型公式即可求解

試題解析:(1)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.

∵直線ax+by+c=0與圓相切的充要條件是

即:,由于a,b∈{1,2,3,4,5,6}

∴滿足條件的情況只有a=3,b=4,c=5;或a=4,b=3,c=5兩種情況.

∴直線ax+by+c=0與圓相切的概率是

(2)先后2次拋擲一枚骰子,將得到的點數(shù)分別記為a,b,事件總數(shù)為6×6=36.

∵三角形的一邊長為5

∴當a=1時,b=5,(1,5,5) 1種

當a=2時,b=5,(2,5,5) 1種

當a=3時,b=3,5,(3,3,5),(3,5,5) 2種

當a=4時,b=4,5,(4,4,5),(4,5,5) 2種

當a=5時,b=1,2,3,4,5,6,(5,1,5),(5,2,5),(5,3,5),

(5,4,5),(5,5,5),(5,6,5) 6

當a=6時,b=5,6,(6,5,5),(6,6,5) 2種

故滿足條件的不同情況共有14

答:三條線段能圍成不同的等腰三角形的概率為

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)有一條光線從射出,并且經(jīng)軸上一點反射.

(1)求入射光線和反射光線所在的直線方程(分別記為);

(2)設(shè)動直線,當點的距離最大時,求所圍成的三角形的內(nèi)切圓(即:圓心在三角形內(nèi),并且與三角形的三邊相切的圓)的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)數(shù)列的前項和為,且,數(shù)列為等差數(shù)列,且, .

(1)求數(shù)列的通項公式;

(2)設(shè),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓,過橢圓右頂點和上頂點的直線與圓相切.

(1)求橢圓的方程;

(2)設(shè)是橢圓的上頂點,過點分別作直線交橢圓兩點,設(shè)這兩條直線的斜率分別為,且,證明:直線過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,

1若曲線在點處的切線為,求的值;

2討論函數(shù)的單調(diào)性;

3設(shè)函數(shù),若至少存在一個,使得成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高2010級數(shù)學培優(yōu)學習小組有男生3人女生2人,這5人站成一排留影。

(1)求其中的甲乙兩人必須相鄰的站法有多少種?

(2)求其中的甲乙兩人不相鄰的站法有多少種?

(3)求甲不站最左端且乙不站最右端的站法有多少種 ?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某班有學生50人,其中男同學30人,用分層抽樣的方法從該班抽取5人去參加某社區(qū)服務(wù)活動。

(1)求從該班男、女同學中各抽取的人數(shù);

(2)從抽取的5名同學中任選2名談此活動的感受,求選出的2名同學中恰有1名男同學的概率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,設(shè)傾斜角為的直線為參數(shù)與曲線為參數(shù)相交于不同的兩點

1,求線段中點的坐標;

2,其中,求直線的斜率

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修坐標系與參數(shù)方程

在平面直角坐標系中,曲線的參數(shù)方程為為參數(shù)),在以原點為極點,軸正半軸為極軸的極坐標系中,直線的極坐標方程為

1的普通方程和的傾斜角;

2)設(shè)點交于兩點,求

查看答案和解析>>

同步練習冊答案