分析 先根據(jù)對數(shù)的運(yùn)算性質(zhì)化簡,再設(shè)3x-1=t,利用換元法即可求出方程的解.
解答 解:log${\;}_{\frac{1}{2}}$(9x-1-5)=log${\;}_{\frac{1}{2}}$(3x-1-2)-2=log${\;}_{\frac{1}{2}}$(3x-1-2)-log${\;}_{\frac{1}{2}}$$\frac{1}{4}$=log${\;}_{\frac{1}{2}}$4(3x-1-2),
∴9x-1-5=4(3x-1-2),
設(shè)3x-1=t,
則t2-4t+3=0,
解得t=1或t=3,
即3x-1=1,由于3x-1=t>$\sqrt{5}$,故舍去,
或3x-1=3,
解x=2
點(diǎn)評 本題考查了對數(shù)方程的解法和對數(shù)的運(yùn)算性質(zhì),關(guān)鍵是換元,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=x|x| | B. | y=x3+1 | C. | y=$\sqrt{x}$ | D. | y=x+|x| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{3}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{6}$或$\frac{7π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com