20.?dāng)?shù)列的通項(xiàng)公式是an=$\frac{n^2}{n^2+1}$,則0.98是數(shù)列的項(xiàng)嗎?

分析 由題意,$\frac{n^2}{n^2+1}$=0.98,求出n,可得結(jié)論.

解答 解:由題意,$\frac{n^2}{n^2+1}$=0.98,
解得n=7,
所以0.98是數(shù)列的第7項(xiàng).

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知a、b、c都是正數(shù),求證:$\frac{a}$+$\frac{c}$+$\frac{c}{a}$≥3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.對(duì)于實(shí)數(shù)x,y,若2x+3y=5,則x2+y2的最小值為$\frac{25}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在平面直角坐標(biāo)系xOy中,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}=1$(a>b>0)的左、右頂點(diǎn)分別是A1,A2,上、下頂點(diǎn)分別為B2,B1,點(diǎn)P($\frac{3}{5}$a,m)(m>0)是橢圓C上一點(diǎn),PO⊥A2B2,直線PO分別交A1B1,A2B2于點(diǎn)M,N.
(1)求橢圓的離心率;
(2)若MN=$\frac{4\sqrt{21}}{7}$,求橢圓C的方程;
(3)在第(2)問條件下,求點(diǎn) Q($\frac{1}{3},0$)與橢圓C上任意一點(diǎn)T的距離d的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)y=xf′(x)的圖象如圖所示(其中f′(x)是函數(shù)f(x)的導(dǎo)函數(shù)),下面四個(gè)圖象中,y=f(x)的圖象大致是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)復(fù)數(shù)z1,z2滿足|z1|=|z1+z2|=3,|z1-z2|=3$\sqrt{3}$,試求log3|(z1$\overline{{z}_{2}}$)2000+($\overline{{z}_{1}}$z22000|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,已知a3=12,S12>0,S13<0.
(1)求數(shù)列{an}的公差d的取值范圍;
(2)求數(shù)列{an}的前n項(xiàng)和為Sn取得最大值時(shí)n的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.若數(shù)列{an}中不超過 f(m)的項(xiàng)數(shù)恰為bm(m∈N*),則稱數(shù)列{bm}是數(shù)列{an}的生成數(shù)列,稱相應(yīng)的函數(shù)f(m)是{an}生成{bm}的控制函數(shù).設(shè)f(m)=m2
(1)若數(shù)列{an}單調(diào)遞增,且所有項(xiàng)都是自然數(shù),b1=1,求a1;
(2)若數(shù)列{an}單調(diào)遞增,且所有項(xiàng)都是自然數(shù),a1=b1,求a1;
(3)若an=2n (n=1,2,3),是否存在{bm}生成{an}的控制函數(shù)g(n)=pn2+qn+r(其中常數(shù)p,q,r∈Z),使得數(shù)列{an}也是數(shù)列{bm}的生成數(shù)列?若存在,求出g(n);若不存在,說明理.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{2x+y≥0}\\{x-y≥0}\\{0≤x≤a}\end{array}\right.$,設(shè)b=x-2y,若b的最小值為-2,則b的最大值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案