分析 (1)由a3=12可得a1=12-2d,由求和公式代入S12>0和S13<0可得d的不等式組,解不等式組可得;
(2)由等差數(shù)列的性質(zhì)和求和公式可得a6>0,a7<0,可得數(shù)列{an}的前6項(xiàng)均為正數(shù),從第7項(xiàng)開(kāi)始為負(fù)數(shù),可得結(jié)論.
解答 解:(1)由a3=12可得a1+2d=12,∴a1=12-2d,
又∵S12=12a1+$\frac{12×11}{2}$d=12(12-2d)+$\frac{12×11}{2}$d>0,∴d>-$\frac{24}{7}$
同理由S13=13a1+$\frac{13×12}{2}$d=13(12-2d)+$\frac{13×12}{2}$d<0,∴d<-3
∴數(shù)列{an}的公差d的取值范圍為($-\frac{24}{7}$,-3);
(2)由題意可得S12=$\frac{12({a}_{1}+{a}_{12})}{2}$=6(a1+a12)=6(a6+a7)>0,
S13=$\frac{13({a}_{1}+{a}_{13})}{2}$=$\frac{13×2{a}_{7}}{2}$=13a7<0,
∴a6+a7>0,a7<0,∴a6>0,a7<0,
∴數(shù)列{an}的前6項(xiàng)均為正數(shù),從第7項(xiàng)開(kāi)始為負(fù)數(shù),
∴數(shù)列{an}的前n項(xiàng)和為Sn取得最大值時(shí)n的值為6
點(diǎn)評(píng) 本題考查等差數(shù)列的性質(zhì)和求和公式,涉及前n項(xiàng)和的最值,屬中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)的圖象關(guān)于直線$x=-\frac{2π}{3}$對(duì)稱 | |
B. | f(x)的圖象關(guān)于點(diǎn)$(-\frac{5π}{12},0)$對(duì)稱 | |
C. | 將函數(shù)$y=\sqrt{3}sin2x-cos2x$的圖象向左平移$\frac{π}{2}$個(gè)單位得到函數(shù)f(x)的圖象 | |
D. | 若方程f(x)=m在$[-\frac{π}{2},0]$上有兩個(gè)不相等的實(shí)數(shù)根,則m的取值范圍是$(-2,-\sqrt{3}]$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com