【題目】已知函數(shù).

(Ⅰ)求曲線在點處的切線方程;

(Ⅱ)若函數(shù)在區(qū)間上單調遞增,求實數(shù)的取值范圍;

(Ⅲ)設函數(shù),其中.證明:的圖象在圖象的下方.

【答案】(1) .

(2) .

(3)證明見解析.

【解析】分析:()求出函數(shù)的導數(shù),計算的值,點斜式求出切線方程即可.

(Ⅱ),并求導.將問題轉化為在區(qū)間上,恒成立,或者恒成立,通過特殊值,且,確定恒成立,通過參數(shù)分離,求得實數(shù)的取值范圍;

(Ⅲ),將問題轉化為證明,利用函數(shù)的導數(shù)確定函數(shù)最小值在區(qū)間,并證明. 的圖象在圖象的下方.

詳解:(Ⅰ)求導,得

又因為

所以曲線在點處的切線方程為

(Ⅱ)設函數(shù),

求導,得

因為函數(shù)在區(qū)間上為單調函數(shù),

所以在區(qū)間上,恒成立,或者恒成立,

又因為,且

所以在區(qū)間,只能是恒成立,即恒成立.

又因為函數(shù)在在區(qū)間上單調遞減,,

所以.

(Ⅲ)證明:設.

求導,得.

,則(其中).

所以當時,(即)為增函數(shù).

又因為,

所以,存在唯一的,使得

在區(qū)間上的情況如下:

-

0

+

所以,函數(shù)上單調遞減,在上單調遞增,

所以 .

又因為,

所以,

所以,即的圖象在圖象的下方.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)討論的單調性;

(2)若,求證:當時,.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某中學一名數(shù)學老師對全班50名學生某次考試成績分男女生進行統(tǒng)計(滿分150分),其中120分(含120分)以上為優(yōu)秀,繪制了如圖所示的兩個頻率分布直方圖:

(1)根據以上兩個直方圖完成下面的列聯(lián)表:

性別 成績

優(yōu)秀

不優(yōu)秀

總計

男生

女生

總計

(2)根據(1)中表格的數(shù)據計算,你有多大把握認為學生的數(shù)學成績與性別之間有關系?

2.072

2.706

3.841

5.024

6.635

7.879

10.828

0.15

0.10

0.05

0.025

0.010

0.005

0.001

附:,其中.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩個籃球隊在4次不同比賽中的得分情況如下:

甲隊

88

91

92

96

乙隊

89

93

9▓

92

乙隊記錄中有一個數(shù)字模糊(即表中陰影部分),無法確認,假設這個數(shù)字具有隨機性,并用表示.

(Ⅰ)在4次比賽中,求乙隊平均得分超過甲隊平均得分的概率;

(Ⅱ)當時,分別從甲、乙兩隊的4次比賽中各隨機選取1次,記這2個比賽得分之差的絕對值為,求隨機變量的分布列;

(Ⅲ)如果乙隊得分數(shù)據的方差不小于甲隊得分數(shù)據的方差,寫出的取值集合.(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=(x﹣1)ex﹣kx2(k∈R).
(1)當k=1時,求函數(shù)f(x)的單調區(qū)間;
(2)當 時,求函數(shù)f(x)在[0,k]上的最大值M.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】現(xiàn)行的個稅法修正案規(guī)定:個稅免征額由原來的2000元提高到3500元,并給出了新的個人所得稅稅率表:

全月應納稅所得額

稅率

不超過1500元的部分

3%

超過1500元至4500元的部分

10%

超過4500元至9000元的部分

20%

超過9000元至35000元的部分

25%

……

例如某人的月工資收入為5000元,那么他應納個人所得稅為:(元).

(Ⅰ)若甲的月工資收入為6000元,求甲應納的個人收的稅;

(Ⅱ)設乙的月工資收入為元,應納個人所得稅為元,求關于的函數(shù);

(Ⅲ)若丙某月應納的個人所得稅為1000元,給出丙的月工資收入.(結論不要求證明)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知點P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面

(1)求證:;

(2)若圓柱的體積

①求三棱錐A1﹣APB的體積.

②在線段AP上是否存在一點M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù), ).

(1)如果曲線在點處的切線方程為,求, 的值;

(2)若, ,關于的不等式的整數(shù)解有且只有一個,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】給出下列說法:①用刻畫回歸效果,當越大時,模型的擬合效果越差,反之則越好;②歸納推理是由特殊到一般的推理,而演繹推移則是由一般到特殊的推理;③綜合法證明數(shù)學問題是“由因索果”,分析法證明數(shù)學問題是“執(zhí)果索因”;④設有一個回歸方程,變量增加1個單位時,平均增加5個單位;⑤線性回歸方程必過點.其中錯誤的個數(shù)有( )

A. 0個 B. 1個 C. 2個 D. 3個

查看答案和解析>>

同步練習冊答案