函數(shù)y=|x|+3的單調(diào)遞減區(qū)間是
 
考點(diǎn):帶絕對(duì)值的函數(shù)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意得求出函數(shù)的表達(dá)式,由分段函數(shù)判斷函數(shù)的單調(diào)性,進(jìn)而頂點(diǎn)答案.
解答: 解:由題意得:
函數(shù)f(x)=|x|+3=
x,x≥0
-x,x<0
,
可得:當(dāng)x<0時(shí)f′(x)=-1<0,所以f(x)在(-∞,0)上是減函數(shù).
當(dāng)x>0時(shí),f′(x)=1>0,所以f(x)在(0,+∞)上是增函數(shù).
而x=0在函數(shù)的定義域內(nèi),
所以函數(shù)f(x)=|x|+3的單調(diào)遞減區(qū)間是(-∞,0].
故答案為:(-∞,0].
點(diǎn)評(píng):解決此類問題的關(guān)鍵是熟練掌握判斷函數(shù)單調(diào)性的方法,即定義證明與導(dǎo)數(shù)證明兩種方法,一般是利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:5x-3x2-2≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在空間直角坐標(biāo)系O-xyz中,△OAB各點(diǎn)的坐標(biāo)分別為O(0,0,0),A(t,0,a),B(0,2-t,b),其中0<t<2,a,b∈R,若要使該三角形在平面xOy中投影面積最大,則t的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的導(dǎo)函數(shù)圖象如圖所示,若△ABC為銳角三角形,則一定成立的是( 。
A、f(cosA)<f(cosB)
B、f(sinA)<f(cosB)
C、f(sinA)>f(sinB)
D、f(sinA)>f(cosB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2
3
sin
ωx
2
•cos
ωx
2
+3cosωx,(ω>0)在一個(gè)周期內(nèi)的圖象如圖所示,A為圖象的最高點(diǎn),B、C為圖象與x軸的交點(diǎn),且△ABC為正三角形.
(Ⅰ)求函數(shù)f(x)的解析式;
(Ⅱ)將f(x)的圖象上每個(gè)點(diǎn)的橫坐標(biāo)縮小為原來的
π
4
倍(縱坐標(biāo)不變),再向右平移
π
3
個(gè)單位得到函數(shù)g(x),若設(shè)g(x)圖象在y軸右側(cè)第一個(gè)最高點(diǎn)為P,試問g(x)圖象上是否存在點(diǎn)Q(θ,g(θ))(π<θ<2π),使得OP⊥OQ,若存在請(qǐng)求出滿足條件的點(diǎn)Q的個(gè)數(shù),若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-3x+2=0,x∈R },B={x|0<x<6,x∈N },則滿足條件A⊆C⊆B的集合C的個(gè)數(shù)為( 。
A、4B、5C、7D、8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=
ax2-2ax+a+8
的定義域?yàn)镽,則實(shí)數(shù)a的范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)=6cos2x-2
3
sinxcosx.
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)當(dāng)-
π
4
≤x≤
π
3
時(shí),求函數(shù)f(x)的值域;
(3)將函數(shù)f(x)的圖象向右平移
π
3
個(gè)單位,得y=g(x)的圖象,求y=g(x)的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M={1,2},N={a2},則“N⊆M”是“a=1”的( 。
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分又不必要條件

查看答案和解析>>

同步練習(xí)冊(cè)答案