17.已知,二面角α-l-β的平面角為120°,二面角γ-m-Φ中,γ⊥α,Φ⊥β,則二面角γ-m-Φ的平面角大小為( 。
A.60°B.120°C.60°或120°D.不確定

分析 二面角α-l-β的平面角與二面角γ-m-Φ的平面角的對應(yīng)邊互相垂直,由此能求出二面角γ-m-Φ的平面角的大。

解答 解:∵二面角α-l-β的平面角為120°,
二面角γ-m-Φ中,γ⊥α,Φ⊥β,
∴二面角α-l-β的平面角與二面角γ-m-Φ的平面角的對應(yīng)邊互相垂直,
∵二面角α-l-β的平面角為120°,
當(dāng)二面角γ-m-Φ的平面角與二面角α-l-β的平面角的開口方向相反時,二面角γ-m-Φ的平面角為60°;
當(dāng)二面角γ-m-Φ的平面角與二面角α-l-β的平面角的開口方向不相反時,二面角γ-m-Φ的平面角可能為120°
把60°的二面角的兩個面垂直于桌面放著,再讓另一個面垂直于桌面和60°二面角中的某一個面,
得到二面角γ-m-Φ的平面角可能為90°.
故選:D.

點評 本題考查二面角的大小的求法,是中檔題,解題時要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.在平面直角坐標(biāo)系xOy中,曲線C的參數(shù)方程為$\left\{\begin{array}{l}x=acosφ\\ y=bsinφ\end{array}$(a>b>0,φ為參數(shù)),且曲線C上的點M(2,$\sqrt{3}$)對應(yīng)的參數(shù)φ=$\frac{π}{3}$,以O(shè)為極點,x軸的正半軸為極軸建立極坐標(biāo)系.
(1)求曲線C的普通方程;
(2)若A(ρ1,θ),B(ρ2,θ+$\frac{π}{2}$)是曲線C上的兩點,求$\frac{1}{ρ_1^2}$+$\frac{1}{ρ_2^2}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.設(shè)函數(shù)f(x)=|2x-1|+|x+1|.
(1)求f(x)≥2的解集;
(2)若函數(shù)f(x)的最小值為m,a,b均為正實數(shù),a+b=m,求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.如圖,AB是⊙O的一條弦,延長AB到點C,使得AB=BC,過點B作BD⊥AC且DB=AB,連接AD與⊙O交于點E,連接CE與⊙O交于點F.
(Ⅰ)求證:D,F(xiàn),B,C四點共圓;
(Ⅱ)若AB=$\sqrt{6}$,DF=$\sqrt{3}$,求BE2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖,已知四棱錐P-ABCD的底面是菱形,PA⊥平面ABCD,∠ABC=60°,E,F(xiàn)G分別是BC,PC,PB的中點.
(1)證明:AE⊥PD;
(2)設(shè)平面PAB∩平面PCD=1,求證:CD∥1;
(3)設(shè)H為棱PD上的動點,若EH與平面PAD所成的最大角的正切值為$\frac{\sqrt{6}}{2}$,求二面角A-EF-G的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,在三棱柱ABC-A1B1C1中,平面ABB1A1⊥平面BCC1B1,AB⊥BB1,AB=BC=2,BB1=4,∠BCC1=60°.
(I)求證:C1B⊥AC;
(Ⅱ)求二面角A-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,已知AB為圓O的直徑,C,D是圓O上的兩個點,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:AC是∠DAB的平分線;
(Ⅱ)求證:OF∥AG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,AB為圓O的直徑,CD為垂直于AB的一條弦,垂足為E,弦BM與CD相交于點F.
(Ⅰ)證明:A、E、F、M四點共圓;
(Ⅱ)若MF=4BF=2,求線段BC的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=lnx,g(x)=f(x)+ax2+bx,其中g(shù)(x)的函數(shù)圖象在點(1,g(1))處的切線平行于x軸.
(Ⅰ)確定a與b的關(guān)系;
(Ⅱ)若a≤0,判斷函數(shù)g(x)的單調(diào)性;
(Ⅲ)設(shè)斜率為k的直線與函數(shù)f(x)的圖象交于兩點A(x1,y1),B(x2,y2)(x1<x2),求證:$\frac{1}{x_2}$<k<$\frac{1}{x_1}$.

查看答案和解析>>

同步練習(xí)冊答案