當(dāng)-1≤x≤1時(shí),函數(shù)y=ax+2a+1的值有正也有負(fù),則實(shí)數(shù)a的取值范圍是(  )
A、a≥-
1
3
B、a≤-1
C、-1<a<-
1
3
D、-1≤a≤-
1
3
考點(diǎn):冪函數(shù)的概念、解析式、定義域、值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先判斷a≠0,再利用f(-1)•f(1)<0,求出a的取值范圍.
解答: 解:根據(jù)題意得,
a≠0;
設(shè)y=f(x)=ax+2a+1,
則f(-1)•f(1)<0,
即(-a+2a+1)(a+2a+1)<0;
解得-1<a<-
1
3

故選:C.
點(diǎn)評(píng):本題考查了利用函數(shù)的單調(diào)性求不等式的解集的問(wèn)題,解題時(shí)應(yīng)利用轉(zhuǎn)化思想進(jìn)行解答,是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列中,Sn=48,S2n=60,則S3n等于( 。
A、63B、75
C、108D、183

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若0<m<n,則有下面結(jié)論:
(1)2m<2n;(2)(
1
2
m<(
1
2
n;(3)log 
1
2
m>log 
1
2
n;(4)log2m>log2n.
其中正確的結(jié)論的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=ax3+bx2+cx(a<0)有極小值-8,其導(dǎo)函數(shù)f'(x)的圖象過(guò)點(diǎn)A(-2,0),B(
2
3
,0).
(1)求f(x)的解析式;
(2)若方程f(x)=mx恰有3個(gè)不同的實(shí)數(shù)解,求實(shí)數(shù)m的取值范圍;
(3)若對(duì)x∈[-3,3]都有f(x)≥t2-14t恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

執(zhí)行如圖所示的程序框圖,若輸入n的值為8,則輸入s的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以(2,-1)為圓心,4為半徑的圓的方程為( 。
A、(x+2)2+(y-1)2=4
B、(x+2)2+(y+1)2=4
C、(x-2)2+(y+1)2=16
D、(x+2)2+(y-1)2=16

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓的半徑為
10
,圓心在直線y=2x上,圓被直線x-y=0截得的弦長(zhǎng)為4
2
,則圓的標(biāo)準(zhǔn)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)命題p:|2x-3|<1,q:
x-1
x-2
≤0,則p是q的(  )
A、充分不必要條件
B、必要不充分條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={-1,-2,-3,0,2},集合A={-1,-2,0},B={-3,0,2},則(∁UA)∩B=( 。
A、{0}B、{-3,2}
C、{-1,-3}D、ϕ

查看答案和解析>>

同步練習(xí)冊(cè)答案