已知圓C經(jīng)過P(4,-2),Q(-1,3)兩點,且在y軸上截得的線段長為4,半徑小于5.

(1)求直線PQ與圓C的方程;

(2)若直線l∥PQ,且l與圓C交于點A,B,且以線段AB為直徑的圓經(jīng)過坐標原點,求直線l的方程.

 

(1)(x-1)2+y2=13. (2)y=-x+4或y=-x-3

【解析】(1)直線PQ的方程為:x+y-2=0,設(shè)圓心C(a,b),半徑為r,

由于線段PQ的垂直平分線的方程是

y-=x-,

即y=x-1,所以b=a-1.①

又由在y軸上截得的線段長為4,

知(a+1)2+(b-3)2=12+a2.②

由①②得:a=1,b=0或a=5,b=4.

當a=1,b=0時,r2=13滿足題意,

當a=5,b=4時,r2=37不滿足題意,

故圓C的方程為(x-1)2+y2=13.

(2)設(shè)直線l的方程為y=-x+m,

A(x1,m-x1),B(x2,m-x2),

由題意可知OA⊥OB,即·=0,

x1x2+(m-x1)(m-x2)=0

整理得m2-m(x1+x2)+2x1x2=0,

將y=-x+m代入(x-1)2+y2=13,

可得2x2-2(m+1)x+m2-12=0.

∴x1+x2=1+m,x1x2=,

即m2-m·(1+m)+m2-12=0,Δ=-4(m2-2m-25)>0,

∴m=4或m=-3,滿足Δ>0,∴y=-x+4或y=-x-3.

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-8曲線與方程(解析版) 題型:選擇題

設(shè)圓(x+1)2+y2=25的圓心為C,A(1,0)是圓內(nèi)一定點,Q為圓周上任一點.線段AQ的垂直平分線與CQ的連線交于點M,則M的軌跡方程為(  )

A.=1 B.=1

C.=1 D.=1

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-5橢圓(解析版) 題型:填空題

若橢圓=1的焦點在x軸上,過點(1,)作圓x2+y2=1的切線,切點分別為A,B,直線AB恰好經(jīng)過橢圓的右焦點和上頂點,則橢圓方程是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:填空題

已知直線l:x-y+4=0與圓C:(x-1)2+(y-1)2=2,則圓C上各點到l距離的最小值為________,最大值為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-4直線與圓、圓與圓的位置關(guān)系(解析版) 題型:選擇題

直線tx+y-t+1=0(t∈R)與圓x2+y2-2x+4y-4=0的位置關(guān)系為(  )

A.相交 B.相切 C.相離 D.以上都有可能

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-3圓的方程(解析版) 題型:填空題

若圓的方程為x2+y2+kx+2y+k2=0,則當圓的面積最大時,圓心坐標為________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-2直線的交點坐標與距離公式(解析版) 題型:解答題

如圖,函數(shù)f(x)=x+的定義域為(0,+∞).設(shè)點P是函數(shù)圖象上任一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M,N.

(1)證明:|PM|·|PN|為定值;

(2)O為坐標原點,求四邊形OMPN面積的最小值.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:8-1直線的傾斜角與斜率、直線方程(解析版) 題型:填空題

若關(guān)于x的方程|x-1|-kx=0有且只有一個正實數(shù)根,則實數(shù)k的取值范圍是________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2015高考數(shù)學(理)一輪配套特訓:7-6空間向量及運算(解析版) 題型:選擇題

已知正方體ABCD-A1B1C1D1中,點E為上底面A1C1的中心,若+x+y,則x、y的值分別為(  )

A.x=1,y=1 B.x=1,y=

C.x=,y= D.x=,y=1

 

查看答案和解析>>

同步練習冊答案