9.由y=cosx及x軸圍成的介于0與2π之間的平面圖形的面積,利用定積分應(yīng)表達(dá)為S=4${∫}_{0}^{\frac{π}{2}}$cosxdx.

分析 根據(jù)所圍成圖形用定積分可求得陰影部分的面積的表達(dá)式.

解答 解:由定積分可求得陰影部分的面積為,如圖所示:
S=${∫}_{0}^{\frac{π}{2}}$cosxdx-${∫}_{\frac{π}{2}}^{\frac{3π}{2}}$cosxdx+${∫}_{\frac{3π}{2}}^{2π}$cosxdx=4${∫}_{0}^{\frac{π}{2}}$cosxdx,
故答案為:S=4${∫}_{0}^{\frac{π}{2}}$cosxdx.

點(diǎn)評(píng) 本題主要考查了定積分在求面積中的應(yīng)用,考查運(yùn)算求解能力,化歸與轉(zhuǎn)化思想、考查數(shù)形結(jié)合思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知直線l的參數(shù)方程是$\left\{\begin{array}{l}{x=1+\frac{1}{2}t}\\{y=-\sqrt{3}+\frac{\sqrt{3}}{2}t}\end{array}\right.$(t為參數(shù))與曲線C:$\left\{\begin{array}{l}{x=2cosθ}\\{y=3sinθ}\end{array}\right.$(θ為參數(shù))的兩個(gè)交點(diǎn)為A、B.
(1)求直線l的傾斜角;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.若方程ax2+bx+c=0(a≠0)無(wú)實(shí)根,求證:a3+ab+c≠0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.用數(shù)學(xué)歸納法證明:$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$=2-$\frac{n+2}{{2}^{n}}$•(n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=x3-$\frac{1}{2}$x2+bx+c.
(1)若曲線y=f(x)在點(diǎn) (1,f(1))處的切線方程為y=3x+$\frac{1}{2}$,分別求b,c的值.
(2)若f(x)在x=1時(shí)取得極值,且x∈[-1,2]時(shí),f(x)<c2恒成立,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知f(x)=3x2-3,g(x)=${∫}_{0}^{x}$f(t)dt(x>0).
(1)求g(x)的最小值;
(2)求由f(x),g(x),x=1,x=2所成的圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知函數(shù)y=a2+2ax+2在-3≤x≤2上有最小值1,則a=3$+\sqrt{2}$,3$-\sqrt{2}$,-2$-\sqrt{3}$,或-2$+\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知各項(xiàng)均不相等的正項(xiàng)數(shù)列{an}的首項(xiàng)為$\frac{1}{2}$,當(dāng)n≥2時(shí),an2=an+1•an-1,數(shù)列{bn}對(duì)任意n∈N+均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0.
(1)若a1≠a2,求證:數(shù)列{bn}是等差數(shù)列;
(2)在(1)的條件下.已知b1=2,b4=5,a2=$\frac{1}{2}$a1,數(shù)列{cn}滿足cn=an•bn,記數(shù)列{cn}的前n項(xiàng)和為Sn,求證:Sn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x2+mx+n的圖象過點(diǎn)(1,3),且f(-1+x)=f(-1-x)對(duì)任意實(shí)數(shù)都成立,函數(shù)y=g(x)與y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱.
(1)求f(x)與g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函數(shù),求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案