6.執(zhí)行如圖所示的程序框圖,若輸出k的值為8,則判斷框內(nèi)可填入的條件是( 。
A.s≤$\frac{3}{4}$B.s≤$\frac{5}{6}$C.s≤$\frac{11}{12}$D.s≤$\frac{15}{24}$

分析 模擬執(zhí)行程序框圖,依次寫出每次循環(huán)得到的k,S的值,當(dāng)S>$\frac{11}{12}$時,退出循環(huán),輸出k的值為8,故判斷框圖可填入的條件是S≤$\frac{11}{12}$.

解答 解:模擬執(zhí)行程序框圖,k的值依次為0,2,4,6,8,
因此S=$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{6}$=$\frac{11}{12}$(此時k=6),
因此可填:S≤$\frac{11}{12}$.
故選:C.

點評 本題考查了當(dāng)型循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷程序運行的S值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.對甲、乙兩名自行車賽手在相同條件下進(jìn)行了6次測試,測得他們的最大速度(單位:m/s)的數(shù)據(jù)如表:
293735332650
323328344043
(1)畫出莖葉圖;
(2)分別求出甲、乙兩名自行車賽手最大速度(單位:m/s)的數(shù)據(jù)的平均數(shù)、方差,你認(rèn)為選誰參加比賽更合適并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.集合M={x|0≤x<2},集合N={x|x2+2x-3<0},則集合M∩N=( 。
A.{x|0≤x<1}B.{x|0≤x<2}C.{x|0≤x≤1}D.{x|0≤x≤2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.(Ⅰ)設(shè)z=1+i(i是虛數(shù)單位),求$\frac{2}{z}$+z2的值;
(Ⅱ)設(shè)x,y∈R,復(fù)數(shù)z=x+yi,且滿足|z|2+(z+$\overline{z}$)i=$\frac{3-i}{2+i}$,試求x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若命題“?x0∈R,x02-3ax0+9<0”為假命題,則實數(shù)a的取值范圍是[-2,2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.某人射擊1次,命中8~10環(huán)的概率如表所示:
命中環(huán)數(shù)10環(huán)9環(huán)8環(huán)
概    率0.120.180.28
則他射擊1次,至少命中9環(huán)的概率為0.3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,扇形AOB是某個旅游景點的平面示意圖,圓心角AOB的大小等于$\frac{π}{3}$,半徑OA=200m,點M在半徑OA上,點N在$\widehat{AB}$上,且MN∥OB,求觀光道路OM與MN長度之和的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知等差數(shù)列{an}中,前m(m為奇數(shù))項的和為77,其中偶數(shù)項之和為33,且a1-am=18,則數(shù)列{an}的通項公式為an=-3n+23.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.計算:(2x+3y)(2x-3y)(16x4+36x2y2+81y4

查看答案和解析>>

同步練習(xí)冊答案