已知函數(shù)f(x)=ln
1+x
1-x
+sinx,則關(guān)于a的不等式f(a-2)+f(a2-4)<0的解集是
 
考點(diǎn):對(duì)數(shù)函數(shù)圖象與性質(zhì)的綜合應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)已知中的函數(shù)解析式,先分析函數(shù)的單調(diào)性和奇偶性,進(jìn)而根據(jù)函數(shù)的性質(zhì)及定義域,可將不等式f(a-2)+f(a2-4)<0化為-1<a2-4<-a+2<1,解不等式組可得答案
解答: 解:函數(shù)f(x)=ln
1+x
1-x
+sinx的定義域?yàn)椋?1,1)
且f(-x)=ln
1-x
1+x
+sin(-x)=-(ln
1+x
1-x
+sinx)=-f(x)
故函數(shù)f(x)為奇函數(shù)
又∵f(x)=ln
1+x
1-x
+sinx=ln(1+x)-ln(1-x)+sinx
且在區(qū)間(-1,1)上y=ln(1+x)和y=sinx為增函數(shù),y=ln(1-x)為減函數(shù)
∴函數(shù)f(x)在區(qū)間(-1,1)上為增函數(shù),
則不等式f(a-2)+f(a2-4)<0可化為:
f(a2-4)<-f(a-2),
即f(a2-4)<f(-a+2),
即-1<a2-4<-a+2<1
解得
3
<a<2
故不等式f(a-2)+f(a2-4)<0的解集是(
3
,2

故答案為:(
3
,2
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是函數(shù)的單調(diào)性和奇偶性的性質(zhì),解不等式,是函數(shù)圖象和性質(zhì)與不等式的綜合應(yīng)用,難度較大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

舒城某運(yùn)輸公司接受了向我縣偏遠(yuǎn)地區(qū)每天送至少180t生活物資的任務(wù).該公司有8輛載重6t的A型卡車(chē)與4輛載重為10 t的B型卡車(chē),有10名駕駛員,每輛卡車(chē)每天往返的次數(shù)為A型卡車(chē)4次,B型卡車(chē)3次;每輛卡車(chē)每天往返的成本費(fèi)A型為320元,B型為504元.請(qǐng)為公司安排一下,應(yīng)如何調(diào)配車(chē)輛,才能使公司所花的成本費(fèi)最低?若只安排A型或B型卡車(chē),所花的成本費(fèi)分別是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)滿足:①在x=1時(shí)有極值;②圖象過(guò)點(diǎn)(0,-3)且在該點(diǎn)處的切線與直線2x+y=0平行.
(1)求f(x)的解析式;
(2)求函數(shù)g(x)=f(x+1)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知二次函數(shù)f(x)=x2-(a-2)x+4是偶函數(shù),則實(shí)數(shù)a的值為( 。
A、0B、4C、-2D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為ρ(cosθ+sinθ)=1.圓的參數(shù)方程為
x=1+rcosθ
y=1+rsinθ
(θ為參數(shù),r>0),若直線l與圓C相切,求r的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(幾何證明選講選做題)如圖,已知點(diǎn)D在圓O直徑AB的延長(zhǎng)線上,過(guò)D作圓O的切線,切點(diǎn)為C.若CD=
3
,BD=1
,則圓O的面積為
 

(坐標(biāo)系與參數(shù)方程選做題)在直角坐標(biāo)系xOy中,曲線l的參數(shù)方程為
x=t
y=3+t.
(t
為參數(shù));以原點(diǎn)O為極點(diǎn),以x軸的正半軸為極軸建立極坐標(biāo)系ρOθ,則曲線l的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

底面半徑為1的圓柱形容器里放有四個(gè)半徑為0.5的實(shí)心鐵球,四個(gè)球兩兩相切,其中底層兩球與容器底面相切,現(xiàn)往容器里注水,使水面恰好浸沒(méi)所有鐵球,則容器中水高為
 
.(提示:正方體中構(gòu)造正四面體)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線x+y+a=0與圓(x-a)2+y2=2相切,則a=( 。
A、1
B、-1
C、
2
D、1或-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某工廠產(chǎn)生的廢氣經(jīng)過(guò)過(guò)濾后排放,過(guò)濾過(guò)程中廢氣的污染指數(shù)量Pmg/L與時(shí)間th間的關(guān)系為P=P0e-kt.如果在前5個(gè)小時(shí)消除了10%的污染物,則10小時(shí)后還剩
 
%的污染物.

查看答案和解析>>

同步練習(xí)冊(cè)答案