曲線y=
1
3
x3+x
在點(1,
4
3
)
處的切線與坐標軸圍成的三角形面積為( 。
A.
1
9
B.
2
9
C.
1
3
D.
2
3
若y=
1
3
x3+x,則y′|x=1=2,即曲線y=
1
3
x3+x
在點(1,
4
3
)
處的切線方程是y-
4
3
=2(x-1)
,它與坐標軸的交點是(
1
3
,0),(0,-
2
3
),圍成的三角形面積為
1
9
,故選A.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

曲線y=
1
3
x3+x
在點(1,
4
3
)
處的切線與坐標軸圍成的三角形面積為( 。
A、
1
9
B、
2
9
C、
1
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

求曲線y=
1
3
x3+x
在點(1,
4
3
)處的切線與坐標軸圍成的三角形面積?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
1
3
x3+x在點(1,
4
3
)處的切線與坐標軸圍成的三角形面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點P在曲線y=
1
3
x3-x+
2
3
上移動,若經(jīng)過點P的曲線的切線的傾斜角為α,則α的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

曲線y=
1
3
x3-x
在點(1, -
2
3
)
處的切線斜率為
0
0

查看答案和解析>>

同步練習冊答案