【題目】已知函數(shù)f(x)=sin2x+2sinxcosx+3cos2x.

(1)求函數(shù)f(x)的單調(diào)遞增區(qū)間;

(2)若x∈[0,],求函數(shù)f(x)的最值及相應(yīng)x的取值.

【答案】(1)[kπ,kπ+],kZ;(2)見(jiàn)解析.

【解析】

試題(1)運(yùn)用二倍角的正弦和余弦公式,及兩角和的正弦公式,化簡(jiǎn)函數(shù)f(x),再由正弦函數(shù)的周期和單調(diào)增區(qū)間,解不等式即可得到.(2)由x的范圍,可得2x+ 的范圍,再由正弦函數(shù)的圖象和性質(zhì),即可得到最值.

試題解析:

(1)fx=sin2x+2sinxcosx+3cos2x=sin2x+2cos2x+1 =sin2x+cos2x+2= sin2x+ +2,

2kπ ≤2x+ ≤2kπ+ kZ,

≤x≤kπ+ kZ,

則有函數(shù)的單調(diào)遞增區(qū)間為[kπkπ+],kZ

(2)當(dāng)x[0,]時(shí),2x+ [,]

則有sin2x+)∈[1,1],

則當(dāng)x=時(shí),fx)取得最小值,且為1,

當(dāng)x=時(shí),fx)取得最大值,且為+2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)為自然對(duì)數(shù)的底數(shù)).

(1)求函數(shù)的單調(diào)區(qū)間;

(2)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;

(3)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

(1)討論的極值;

(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,設(shè)向量 ,其中的兩個(gè)內(nèi)角.

(1)若,求證: 為直角;

2)若,求證: 為銳角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知過(guò)點(diǎn)A(0,1)且斜率為k的直線l與圓C(x2)2(y3)21交于MN兩點(diǎn).

(1)k的取值范圍;

(2)12,其中O為坐標(biāo)原點(diǎn),求|MN|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列四個(gè)結(jié)論:

(1)若,則恒成立;

(2)命題“若,則”的逆否命題為“若,則”;

(3)“命題為真”是“命題為真”的充分不必要條件;

(4)命題“”的否定是“”.

其中正確的結(jié)論的個(gè)數(shù)是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知雙曲線C和橢圓有公共的焦點(diǎn),且離心率為

1)求雙曲線C的方程.

2)經(jīng)過(guò)點(diǎn)M21)作直線l交雙曲線CA,B兩點(diǎn),且MAB的中點(diǎn),求直線l的方程并求弦長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

Ⅰ)若函數(shù)在區(qū)間(其中)上存在極值,求實(shí)數(shù)的取值范圍.

Ⅱ)如果當(dāng)時(shí),不等式恒成立,求實(shí)數(shù)的取值范圍.

Ⅲ)求證

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】富華中學(xué)的一個(gè)文學(xué)興趣小組中,三位同學(xué)張博源、高家銘和劉雨恒分別從莎士比亞、雨果和曹雪芹三位名家中選擇了一位進(jìn)行性格研究,并且他們選擇的名家各不相同.三位同學(xué)一起來(lái)找圖書(shū)管理員劉老師,讓劉老師猜猜他們?nèi)烁髯缘难芯繉?duì)象.劉老師猜了三句話:“①?gòu)埐┰囱芯康氖巧勘葋;②劉雨恒研究的肯定不是曹雪芹;③高家銘自然不?huì)研究莎士比亞.”很可惜,劉老師的這種猜法,只猜對(duì)了一句.據(jù)此可以推知張博源、高家銘和劉雨恒分別研究的是__________.(A莎士比亞、B雨果、C曹雪芹,按順序填寫字母即可.)

查看答案和解析>>

同步練習(xí)冊(cè)答案