分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答 解:(1)∵f(x)=x2-2x;
∴f(1)=-1,f(-1)=1+2=3,
則f(-1)≠-f(1),f(-1)≠f(1),則函數(shù)f(x)為非奇非偶函數(shù).
(2)f(x)=x3+$\frac{1}{x}$的定義域?yàn)閧x|x≠0};
則f(-x)=-x3-$\frac{1}{x}$=-(x3+$\frac{1}{x}$)=-f(x),則函數(shù)f(x)為奇函數(shù).
(3)由$\left\{\begin{array}{l}{1-{x}^{2}≥0}\\{{x}^{2}-1≥0}\end{array}\right.$,得$\left\{\begin{array}{l}{{x}^{2}≤1}\\{{x}^{2}≥1}\end{array}\right.$,得x2=1,x=±1,即函數(shù)的定義域?yàn)閧-1,1},
此時(shí)f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$=0,則函數(shù)f(x)為既是奇函數(shù)也是偶函數(shù);
(4)f(x)=2-|x|;則f(-x)=2-|x|=f(x),則函數(shù)f(x)為偶函數(shù);
(5)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3(x>0)}\\{0(x=0)}\\{-{x}^{2}-2x-3(x<0)}\end{array}\right.$.
當(dāng)x>0,則-x<0,則f(-x)=-x2+2x-3=-(x2-2x+3)=-f(x),
當(dāng)x<0,則-x>0,則f(-x)=x2+2x+3=-(-x2-2x-3)=-f(x),
綜上f(-x)=-f(x),即函數(shù)f(x)是奇函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.注意函數(shù)定義域的對(duì)稱性.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{a}$>$\frac{1}$ | B. | a3>b3 | C. | a2>b2 | D. | a>|b| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2R | B. | R | ||
C. | 4R | D. | $\frac{1}{2}$R(R為△ABC外接圓半徑) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{5}$ | B. | 2 | C. | $\frac{{\sqrt{11}}}{2}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com