4.已知函數(shù)f(x)=$\left\{{\begin{array}{l}{2^x}-1,x>0\\ x,x≤0.\end{array}}$若f(a)+f(1)=0,則實(shí)數(shù)a的值等于( 。
A.2B.-1C.-1或0D.0

分析 由已知得f(a)=-f(1)=-(21-1)=-1.當(dāng)a>0時(shí),f(a)=2a-1=-1;當(dāng)a≤0時(shí),f(a)=a=-1.由此能求出實(shí)數(shù)a.

解答 解:∵函數(shù)f(x)=$\left\{{\begin{array}{l}{2^x}-1,x>0\\ x,x≤0.\end{array}}$,f(a)+f(1)=0,
∴f(a)=-f(1)=-(21-1)=-1,
當(dāng)a>0時(shí),f(a)=2a-1=-1,無(wú)解;
當(dāng)a≤0時(shí),f(a)=a=-1.
∴實(shí)數(shù)a=-1.
故選:B.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.設(shè)a是實(shí)數(shù),f(x)=a-$\frac{2}{{{2^x}+1}}$(x∈R).
(1)證明不論a為何實(shí)數(shù),f(x)均為增函數(shù);
(2)若f(x)滿足f(-x)+f(x)=0,解關(guān)于x的不等式f(x+1)+f(1-2x)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.設(shè)0<a≤1,函數(shù)f(x)=x+$\frac{a}{x}$-1,g(x)=x-2lnx,若對(duì)任意的x1∈[1,e],存在x2∈[1,e]都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍是[2-2ln2,1].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{7}{3}π$;表面積為$(5+\sqrt{2})π$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列各函數(shù)中,表示同一函數(shù)的是( 。
A.y=lgx與$y=\frac{1}{2}lgx{\;}^2$B.$y=\frac{{{x^2}-1}}{x-1}$與y=x+1
C.$y=\sqrt{x^2}-1$與y=x-1D.y=x與$y={log_a}{a^x}$(a>0且a≠1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.log3$\sqrt{27}$+($\frac{8}{125}$)${\;}^{-\frac{1}{3}}}$-(-$\frac{3}{5}$)0+$\root{4}{{{{16}^3}}}$=11.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.銷售甲、乙兩種商品所得利潤(rùn)分別是y1,y2萬(wàn)元,它們與投入資金x萬(wàn)元的關(guān)系分別為y1=m$\sqrt{x+1}$+a,y2=bx,(其中m,a,b都為常數(shù)),函數(shù)y1,y2對(duì)應(yīng)的曲線C1,C2如圖所示.
(1)求函數(shù)y1與y2的解析式;
(2)若該商場(chǎng)一共投資10萬(wàn)元經(jīng)銷甲、乙兩種商品,求該商場(chǎng)所獲利潤(rùn)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.計(jì)算:
(1)8${\;}^{-\frac{1}{3}}}$+(-$\frac{5}{9}$)0-$\sqrt{{{(e-3)}^2}}$;
(2)$\frac{1}{2}$lg25+lg2-log29×log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖所示,已知在四邊形ABCD中,AD⊥CD,AD=5,AB=7,BD=8,∠BCD=135°.
(1)求∠BDA的大小
(2)求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案