【題目】已知定點及橢圓,過點的動直線與橢圓相交于, 兩點.
(1)若線段中點的橫坐標(biāo)是,求直線的方程;
(2)設(shè)點的坐標(biāo)為,求證: 為定值.
【答案】(1)或;(2)
【解析】試題分析:(1)將直線的點斜式方程(其中斜率為參數(shù))代入橢圓方程,并設(shè)出交點A,B的坐標(biāo),消去Y后,可得一個關(guān)于X的一元二次方程,然后根據(jù)韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系)易得A、B兩點中點的坐標(biāo)表達(dá)式,再由AB中點的橫坐標(biāo)是,,構(gòu)造方程,即可求出直線的斜率,進(jìn)而得到直線的方程.(2)由M點的坐標(biāo),我們易給出兩個向量的坐標(biāo),然后代入平面向量數(shù)量集公式,結(jié)合韋達(dá)定理(一元二次方程根與系數(shù)關(guān)系),不難不求出的值.
試題解析:
(Ⅰ)依題意,直線的斜率存在,設(shè)直線的方程為,
將代入,消去整理得,
.
設(shè), ,
則,
由線段中點的橫坐標(biāo)是,
得,
解得,適合().
所以直線的方程為,或.
(Ⅱ)①當(dāng)直線與軸不垂直時,
由(I)知, .(),
所以,
.
將()代入,整理得:
,
.
②當(dāng)直線與軸垂直時,
此時點, 的坐標(biāo)分別為、,
此時亦有.
綜上, .
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)用“隨機(jī)模擬方法”計算曲線與直線, 所圍成的曲邊三角形的面積時,用計算機(jī)分別產(chǎn)生了10個在區(qū)間上的均勻隨機(jī)數(shù)和10個區(qū)間上的均勻隨機(jī)數(shù)(, ),其數(shù)據(jù)如下表的前兩行.
2.50 | 1.01 | 1.90 | 1.22 | 2.52 | 2.17 | 1.89 | 1.96 | 1.36 | 2.22 | |
0.84 | 0.25 | 0.98 | 0.15 | 0.01 | 0.60 | 0.59 | 0.88 | 0.84 | 0.10 | |
0.90 | 0.01 | 0.64 | 0.20 | 0.92 | 0.77 | 0.64 | 0.67 | 0.31 | 0.80 |
由此可得這個曲邊三角形面積的一個近似值是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c.
(1)若f(﹣1)=0,試判斷函數(shù)f(x)零點個數(shù);
(2)若對x1x2∈R,且x1<x2 , f(x1)≠f(x2),證明方程f(x)= 必有一個實數(shù)根屬于(x1 , x2).
(3)是否存在a,b,c∈R,使f(x)同時滿足以下條件
①當(dāng)x=﹣1時,函數(shù)f(x)有最小值0;
②對任意x∈R,都有0≤f(x)﹣x≤ 若存在,求出a,b,c的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點,且離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)是橢圓上的點,直線與(為坐標(biāo)原點)的斜率之積為.若動點滿足,試探究是否存在兩個定點,使得為定值?若存在,求的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司為了解廣告投入對銷售收益的影響,在若干地區(qū)各投入萬元廣告費用,并將各地的銷售收益繪制成頻率分布直方圖(如圖所示).由于工作人員操作失誤,橫軸的數(shù)據(jù)丟失,但可以確定橫軸是從開始計數(shù)的. [附:回歸直線的斜率和截距的最小二乘估計公式分別為.]
(1)根據(jù)頻率分布直方圖計算圖中各小長方形的寬度;
(2)試估計該公司投入萬元廣告費用之后,對應(yīng)銷售收益的平均值(以各組的區(qū)間中點值代表該組的取值);
(3)該公司按照類似的研究方法,測得另外一些數(shù)據(jù),并整理得到下表:
廣告投入 (單位:萬元) | 1 | 2 | 3 | 4 | 5 |
銷售收益 (單位:萬元) | 2 | 3 | 2 | 7 |
由表中的數(shù)據(jù)顯示, 與之間存在著線性相關(guān)關(guān)系,請將(2)的結(jié)果填入空白欄,并求出關(guān)于的回歸直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點是拋物線的焦點, 若點在上,且.
(1)求的值;
(2)若直線經(jīng)過點且與交于(異于)兩點, 證明: 直線與直線的斜率之積為常數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為, 為的中點, 為線段上的動點,過點, , 的平面截該正方體所得的截面為,則下列命題正確的是__________(寫出所有正確命題的編號).
①當(dāng)時, 為四邊形;②當(dāng)時, 為等腰梯形;
③當(dāng)時, 與的交點滿足;
④當(dāng)時, 為五邊形;
⑤當(dāng)時, 的面積為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的方程為.以坐標(biāo)原點為極點, 軸的非負(fù)半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出曲線的參數(shù)方程和曲線的直角坐標(biāo)方程;
(2)設(shè)點在曲線上,點在曲線上,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面平面,是等腰直角三角形,,四邊形是直角梯形,,,,,分別為,的中點.
(I)求證:平面.
(II)求直線和平面所成角的正弦值.
(III)能否在上找一點,使得平面?若能,請指出點的位置,并加以證明;若不能,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com