【題目】某同學用“隨機模擬方法”計算曲線與直線, 所圍成的曲邊三角形的面積時,用計算機分別產(chǎn)生了10個在區(qū)間上的均勻隨機數(shù)和10個區(qū)間上的均勻隨機數(shù), ),其數(shù)據(jù)如下表的前兩行.

2.50

1.01

1.90

1.22

2.52

2.17

1.89

1.96

1.36

2.22

0.84

0.25

0.98

0.15

0.01

0.60

0.59

0.88

0.84

0.10

0.90

0.01

0.64

0.20

0.92

0.77

0.64

0.67

0.31

0.80

由此可得這個曲邊三角形面積的一個近似值是( )

A. B. C. D.

【答案】A

【解析】解答:由表可知,向矩形區(qū)域內(nèi)隨機拋擲10個點,

其中有6個點在曲邊三角形內(nèi),其頻率為.

∵矩形區(qū)域的面積為e1,

∴曲邊三角形面積的近似值為.

本題選擇A選項.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知向量 =(2cosωx,cos2ωx), =(sinωx,1)(其中ω>0),令f(x)= ,且f(x)的最小正周期為π.
(1)求 的值;
(2)寫出 上的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公比為負值的等比數(shù)列{an}中,a1a5=4,a4=﹣1.
(1)求數(shù)列{an}的通項公式;
(2)設bn= + +…+ ,求數(shù)列{an+bn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】記Sn為正項等比數(shù)列{an}的前n項和,若 ﹣7 ﹣8=0,且正整數(shù)m,n滿足a1ama2n=2 ,則 + 的最小值是( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若關于x的不等式2x2﹣8x﹣4﹣a>0在1<x<4內(nèi)有解,則a的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知圓的極坐標方程為,以極點為原點,極軸為軸的正半軸建立平面直角坐標系,取相同單位長度(其中 ),若傾斜角為且經(jīng)過坐標原點的直線與圓相交于點點不是原點).

(1)求點的極坐標;

(2)設直線過線段的中點,且直線交圓兩點,求的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)討論函數(shù)的單調(diào)性;

(2)若在定義域內(nèi)恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在“新零售”模式的背景下,某大型零售公司咪推廣線下分店,計劃在市的區(qū)開設分店,為了確定在該區(qū)開設分店的個數(shù),該公司對該市已開設分店聽其他區(qū)的數(shù)據(jù)作了初步處理后得到下列表格.記表示在各區(qū)開設分店的個數(shù), 表示這個個分店的年收入之和.

(個)

2

3

4

5

6

(百萬元)

2.5

3

4

4.5

6

(1)該公司已經(jīng)過初步判斷,可用線性回歸模型擬合的關系,求關于的線性回歸方程

(2)假設該公司在區(qū)獲得的總年利潤(單位:百萬元)與之間的關系為,請結合(1)中的線性回歸方程,估算該公司應在區(qū)開設多少個分時,才能使區(qū)平均每個分店的年利潤最大?

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定點及橢圓過點的動直線與橢圓相交于, 兩點.

1)若線段中點的橫坐標是求直線的方程;

(2)設點的坐標為求證: 為定值.

查看答案和解析>>

同步練習冊答案