給出下列四個命題:
①直線垂直于一個平面內(nèi)的無數(shù)條直線是這條直線與這個平面垂直的充要條件;
②過空間一定點有且只有一條直線與已知平面垂直;
③不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行是這條直線和這個平面平行的充分條件;
④一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等或互補.
其中真命題的為(  )
A、①③B、②④C、②③D、③④
考點:平面與平面之間的位置關(guān)系,空間中直線與直線之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:利用空間中線線、線面、面面間的位置關(guān)系求解.
解答: 解:①直線垂直于一個平面內(nèi)的無數(shù)條直線是這條直線與這個平面垂直的必要條件,故①錯誤;
②過空間一定點有且只有一條直線與已知平面垂直,
由直線與平面垂直的性質(zhì)知②正確;
③不在一個平面內(nèi)的一條直線和平面內(nèi)的一條直線平行是這條直線和這個平面平行的充分條件,
由直線與平面垂直的判定定理知③正確;
④一個二面角的兩個半平面分別垂直于另一個二面角的兩個半平面,則這兩個二面角相等或互補,
這個命題不正確,如圖:
正方體ABCD-A1B1C1D1中,二面角D-AA1-F與二面角D1-DC-A的兩個半平面就是分別對應垂直的,但是這兩個二面角既不相等,也不互補.
故選:C.
點評:本題考查真假命題的判斷,是基礎題,解題時要認真審題,注意空間思維能力的培養(yǎng).
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,以原點為極點,x軸的正半軸為極軸建立極坐標系,兩種坐標系取相同的單位長度.已知曲線C1
x=2+
3
5
t
y=
4
5
t
(0<a<1為參數(shù))和曲線C2:ρsin2θ=2cosθ相交于A、B兩點,設線段AB的中點為M,則點M的直角坐標為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若sin(α+β)cosβ-cos(α+β)sinβ=0,則sin(α+2β)+sin(α-2β)=
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,∠ACB=90°,BC=2,AC=3,點D在斜邊AB上,以CD為棱把它折成直二面角A-CD-B,折疊后AB的最小值為( 。
A、
6
B、
7
C、2
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)y=x-lnx的單調(diào)增區(qū)間為( 。
A、(0,1)
B、(-∞,0)
C、(1,+∞)
D、(-∞,0)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在正方體ABCD-A1B1C1D1中,P、Q分別是棱CD、CC1的中點,則異面直線A1P與DQ所成的角的大小是( 。
A、45°B、60°
C、75°D、90°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

直線y=2x為雙曲線C:
x2
a2
-
y2
b2
=1(a>0,b>0)的一條漸近線,則雙曲線C的離心率是( 。
A、
3
B、
3
2
C、
5
D、
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+φ)(ω>0,0≤φ≤π)為偶函數(shù),其圖象上相鄰的兩個對稱軸之間的距離為π.
(1)求f(x)的解析式;
(2)若sinα-f(α)=
2
3
,求
2
sin(2α-
π
4
)+1
1+tanα
的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點A(a,b)(其中a≠b)在矩陣M=
cosα-sinα
sinαcosα
對應的變換作用下得到點A(-b,a).
(Ⅰ)求矩陣M的逆矩陣M-1;
(Ⅱ)求曲線C:(x-1)2+y2=1在矩陣M-1所對應的變換作用下得到的曲線C′的方程.

查看答案和解析>>

同步練習冊答案