15.已知異面直線a,b所成角為60°,直線AB與a,b均垂直,且垂足分別是點(diǎn)A,B若動(dòng)點(diǎn)P∈a,Q∈b,|PA|+|QB|=m,則線段PQ中點(diǎn)M的軌跡圍成的區(qū)域的面積是$\frac{\sqrt{3}{m}^{2}}{4}$.

分析 作直線a,b以及點(diǎn)P、Q在線段AB的中垂面上的投影,記為直線a′,b′認(rèn)及點(diǎn)P′,Q′,由線段P′Q′的中點(diǎn)即為點(diǎn)M,這樣把空間問(wèn)題轉(zhuǎn)化成平面問(wèn)題.

解答 解:設(shè)線段AB的中垂面為α,則M的軌跡在平面α內(nèi),在平面α內(nèi)分別作直線a,b的投影a′,b′,則兩直線的夾角為60°
設(shè)A,B在平面α的投影為O,P,Q在平面α內(nèi)的投影分別為P′,Q′,則M為P′Q′的中點(diǎn),
∴OP′=PA,OQ′=BQ.
∵|PA|+|QB|=m,∴OP′+OQ′=m.
在直線a′,b′上分別取點(diǎn)E,F(xiàn),G,H四點(diǎn),使得OE=OF=OG=OH=$\frac{m}{2}$.
∵OE+OH=OP′+OQ′=m,∴P′E=HQ′
過(guò)P′作P′R∥EH交OQ′于R,則HR=P′E=HQ′,
∴P′Q′的中點(diǎn)M在EH上,
同理可得M在EF,F(xiàn)G,GH上,
∴M的軌跡為矩形EHGH.
∵∠EOH=60°,OE=OF=OG=OH=$\frac{m}{2}$,
∴S矩形EFGH=$\frac{1}{2}×\frac{m}{2}×\frac{m}{2}×sin60°×2$+$\frac{1}{2}×\frac{m}{2}×\frac{m}{2}×sin120°×2$=$\frac{\sqrt{3}{m}^{2}}{4}$.
故答案為:$\frac{\sqrt{3}{m}^{2}}{4}$.

點(diǎn)評(píng) 本題考查了點(diǎn)的軌跡的判斷,解題時(shí)要認(rèn)真審題,合理地化空間問(wèn)題為平面問(wèn)題,注意數(shù)形結(jié)合思想的合理運(yùn)用,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.一個(gè)幾何體的三視圖及其相關(guān)數(shù)據(jù)如圖所示,求這個(gè)幾何體的表面積. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.在等腰直角三角形ABC中,斜邊AC=2$\sqrt{2}$,則$\overrightarrow{AB}$•$\overrightarrow{CA}$=-4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.如圖,已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過(guò)點(diǎn)(1,$\frac{3}{2}$),且離心率為$\frac{1}{2}$.
(1)求橢圓C的方程;
(2)若直線l過(guò)橢圓C的左焦點(diǎn)F1交橢圓于A,B兩點(diǎn),AB的中垂線交長(zhǎng)軸于點(diǎn)D,試探索$\frac{|D{F}_{1}|}{|AB|}$是否為定值?若是,求出該定值,否則說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知首項(xiàng)為$\frac{1}{2}$,公比不等于1的等比數(shù)列{an}的前n項(xiàng)和為Sn,且S3、S2、S4成等差數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=n|an|,數(shù)列{bn}的前n項(xiàng)和為Tn,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.下列說(shuō)法正確的是( 。
A.兩兩相交的三條直線共面
B.兩條異面直線在同一平面上的射影可以是一條直線
C.一條直線上有兩點(diǎn)到平面的距離相等,則這條直線和該平面平行
D.不共面的四點(diǎn)中,任何三點(diǎn)不共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.某中學(xué)高一(2)班甲、乙兩名同學(xué)自高中以來(lái)每次數(shù)學(xué)考試成績(jī)情況如下:
甲的得分:95,75,86,89,71,65,76,88,94,110,107;
乙的得分:83,86,93,99,88,103,98,114,98,79,101.
畫(huà)出兩人的數(shù)學(xué)成績(jī)莖葉圖,請(qǐng)根據(jù)莖葉圖對(duì)兩人的數(shù)學(xué)成績(jī)進(jìn)行比較.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.(1+2x)(x+$\frac{2}{x}$)5展開(kāi)式中x的系數(shù)為40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:選擇題

如圖,兩點(diǎn)在反比例函數(shù)的圖象上,兩點(diǎn)在反比例函數(shù)的圖象上,軸于點(diǎn),軸于點(diǎn),,,,則=( )

A.4 B. C. D.6[

查看答案和解析>>

同步練習(xí)冊(cè)答案