分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間即可;
(Ⅱ)通過x=0成立,x>0時(shí),問題轉(zhuǎn)化為a≥$\frac{x-cosx}{sinx}$,(0<x≤$\frac{π}{2}$],根據(jù)函數(shù)的單調(diào)性求出a的范圍即可.
解答 解:(Ⅰ)a=2時(shí),f(x)=x-2sinx,
f′(x)=1-2cosx,
令f′(x)>0,解得:$\frac{π}{3}$<x≤$\frac{π}{2}$,
令f′(x)<0,解得:0≤x<$\frac{π}{3}$,
∴f(x)在[0,$\frac{π}{3}$)遞減,在($\frac{π}{3}$,$\frac{π}{2}$]遞增;
(Ⅱ)若f(x)≤cosx,
即asinx≥x-cosx,
x=0時(shí),顯然成立,
0<x≤$\frac{π}{2}$時(shí),
a≥$\frac{x-cosx}{sinx}$,(0<x≤$\frac{π}{2}$],
令g(x)=$\frac{x-cosx}{sinx}$,(0<x≤$\frac{π}{2}$],
g′(x)=$\frac{1+sinx-xcosx}{{(sinx)}^{2}}$,
令h(x)=1+sinx-xcosx,(0<x≤$\frac{π}{2}$],
h′(x)=xsinx>0,
故h(x)在(0,$\frac{π}{2}$]遞增,
h(x)>h(0)=1>0,
∴g′(x)>0,g(x)在(0,$\frac{π}{2}$]遞增,
∴g(x)max=g($\frac{π}{2}$)=$\frac{π}{2}$,
故a≥$\frac{π}{2}$.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{8}$ | B. | $\frac{2}{17}$ | C. | $\frac{3}{26}$ | D. | $\frac{3}{28}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com