20.函數(shù)f(x)=2cos(x+$\frac{π}{3}$)-1的對稱軸為x=kπ-$\frac{π}{3}$,k∈Z,最小值為-3.

分析 利用余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,求得結(jié)論.

解答 解:對于函數(shù)f(x)=2cos(x+$\frac{π}{3}$)-1,令x+$\frac{π}{3}$=kπ,求得x=kπ-$\frac{π}{3}$,k∈Z,
根據(jù)余弦函數(shù)的值域可得函數(shù)的最小值為-2-1=-3,
故答案為:$x=kπ-\frac{π}{3}(k∈Z)$;-3.

點評 本題主要考查余弦函數(shù)的圖象的對稱性,余弦函數(shù)的最值,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.設(shè)D為△ABC所在平面內(nèi)一點,$\overrightarrow{BC}=3\overrightarrow{DC}$,則( 。
A.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$B.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$C.$\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{2}{3}$$\overrightarrow{AC}$D.$\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{2}{3}$$\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x)=|log3x|,若存在兩個不同的實數(shù)a,b滿足f(a)=f(b),則ab=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若集合A={1,2,3},B={(x,y)|x+y-4>0,x,y∈A},則集合B中的元素個數(shù)為( 。
A.9B.6C.4D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,已知邊長為4的菱形ABCD中,AC∩BD=O,∠ABC=60°.將菱形ABCD沿對角線AC折起得到三棱錐D-ABC,二面角D-AC-B的大小為60°,則直線BC與平面DAB所成角的正弦值為$\frac{3\sqrt{13}}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知函數(shù)f(x)=x2+2x-a,若方程f(f(x))=0有兩個不等的實數(shù)解,則a的取值范圍是$\frac{1-\sqrt{5}}{2}$<a<$\frac{1+\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.在平面直角坐標(biāo)系xOy中,以x的非負(fù)半軸為始邊作兩個銳角α,β,它們的終邊分別與單位圓交于點A,B,已知A的橫坐標(biāo)為$\frac{\sqrt{5}}{5}$,B的縱坐標(biāo)為$\frac{\sqrt{2}}{10}$,則2α+β=$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.如圖所示,點F1(-$\sqrt{3}$,0),F(xiàn)2($\sqrt{3}$,0),動點M到點F2的距離是2$\sqrt{6}$,線段MF1的中垂線交MF2于點P.
(I)當(dāng)點M變化時,求動點P的軌跡G的方程;(Ⅱ)過點(2,0)作直線l與軌跡G交于A,B兩點,O是坐標(biāo)原點,設(shè)$\overrightarrow{OS}$=$\overrightarrow{OA}$+$\overrightarrow{OB}$,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|OS|=|AB|)?若存在,求出直線l的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知:矩形A1ABB1,且AB=2AA1,C1,C分別是A1B1、AB的中點,D為C1C中點,將矩形A1ABB1沿著直線C1C折成一個60°的二面角,如圖所示.

(Ⅰ)求證:AB1⊥A1D;
(Ⅱ)求AB1與平面A1B1D所成角的正弦值..

查看答案和解析>>

同步練習(xí)冊答案