15.已知:矩形A1ABB1,且AB=2AA1,C1,C分別是A1B1、AB的中點(diǎn),D為C1C中點(diǎn),將矩形A1ABB1沿著直線C1C折成一個(gè)60°的二面角,如圖所示.

(Ⅰ)求證:AB1⊥A1D;
(Ⅱ)求AB1與平面A1B1D所成角的正弦值..

分析 (I)連結(jié)AB、A1B1,則可證明幾何體ABC-A1B1C1是正三棱柱.取BC中點(diǎn)O,B1C1的中點(diǎn)O1,連結(jié)OA,OO1,以O(shè)為原點(diǎn)建立坐標(biāo)系,設(shè)AA1=2,求出$\overrightarrow{A{B}_{1}}$和$\overrightarrow{{A}_{1}D}$的坐標(biāo),通過計(jì)算$\overrightarrow{A{B}_{1}}•\overrightarrow{{A}_{1}D}=0$得出AB1⊥A1D;
(II)求出平面A1B1D的法向量$\overrightarrow{n}$,則AB1與平面A1B1D所成角的正弦值為|cos<$\overrightarrow{n},\overrightarrow{A{B}_{1}}$>|.

解答 證明:(Ⅰ)連結(jié)AB、A1B1,
∵C1,C分別是矩形A1ABB1邊A1B1、AB的中點(diǎn),
∴AC⊥CC1,BC⊥CC1,AC∩BC=
∴CC1⊥面ABC
∴∠ACB為二面角A-CC'-A'的平面角,則∠ACB=60°.
∴△ABC為正三角形,即幾何體ABC-A1B1C1是正三棱柱.
取BC中點(diǎn)O,B1C1的中點(diǎn)O1,連結(jié)OA,OO1,則OA⊥平面BB1C1C,OO1⊥BC.
以O(shè)為原點(diǎn),以O(shè)B,OO1,OA的方向?yàn)閤,y,z軸的正方向建立空間直角坐標(biāo)系,
不妨設(shè)AA1=2,則A(0,0,$\sqrt{3}$),B1(1,2,0),D(-1,1,0),A1(0,2,$\sqrt{3}$).
∴$\overrightarrow{A{B}_{1}}$=(1,2,-$\sqrt{3}$),$\overrightarrow{{A_1}D}=(-1,-1,-\sqrt{3})$,
∴$\overrightarrow{A{B}_{1}}•\overrightarrow{{A}_{1}D}$=1×(-1)+2×(-1)+(-$\sqrt{3}$)×(-$\sqrt{3}$)=0,
∴$\overrightarrow{A{B_1}}⊥\overrightarrow{{A_1}D}$
∴AB1⊥A1D.
(Ⅱ)$\overrightarrow{{A}_{1}{B}_{1}}$=(1,0,-$\sqrt{3}$),
設(shè)平面A1B1D的法向量為$\overrightarrow{n}$=(x,y,z).則$\overrightarrow n⊥\overrightarrow{{A_1}{B_1}}$,$\overrightarrow n⊥\overrightarrow{{A_1}D}$.
∴$\left\{\begin{array}{l}x-\sqrt{3}z=0\\-x-y-\sqrt{3}z=0\end{array}\right.$,令z=1,得$\overrightarrow n=(\sqrt{3},-2\sqrt{3},1)$.
∴cos<$\overrightarrow{n},\overrightarrow{A{B}_{1}}$>=$\frac{\overrightarrow{n}•\overrightarrow{A{B}_{1}}}{|\overrightarrow{n}||\overrightarrow{A{B}_{1}}|}$=$\frac{-4\sqrt{3}}{4•2\sqrt{2}}$=-$\frac{{\sqrt{6}}}{4}$.
∴AB1與平面A1B1D所成角的正弦值為$\frac{{\sqrt{6}}}{4}$.

點(diǎn)評 本題考查了空間向量在立體幾何中的應(yīng)用,線面角的計(jì)算,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=2cos(x+$\frac{π}{3}$)-1的對稱軸為x=kπ-$\frac{π}{3}$,k∈Z,最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知點(diǎn)N(1,3),若橢圓3x2+y2=λ上存在兩點(diǎn)A、B,使得$\overrightarrow{AN}=\overrightarrow{NB}$,且線段AB的垂直平分線與橢圓相交于C、D兩點(diǎn).
(1)求直線AB的方程;
(2)是否存在λ,使得A、B、C、D四點(diǎn)共圓?若存在,寫出圓的方程,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.設(shè)命題p:2x2-7x+3≤0,命題q:x2-(2a+1)x+a(a+1)≤0,若命題p是命題q的必要不充分條件,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)f(x)=lnx+$\frac{1}{2}$x2-$\frac{5}{2}$x.
(Ⅰ)若關(guān)于x的方程f(x)+m=0在[$\frac{1}{4}$,2]上有實(shí)數(shù)根,求m的取值范圍;
(Ⅱ)設(shè)x1,x2(x1<x2)是函數(shù)g(x)=f(x)-(b-$\frac{3}{2}$)x的兩個(gè)極值點(diǎn),若b≥$\frac{3}{2}$,且g(x1)-g(x2)≥k恒成立,求實(shí)數(shù)k的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若存在正實(shí)數(shù)y,使得$\frac{xy}{y-x}$=$\frac{1}{5x+4y}$,則實(shí)數(shù)x的最大值為$\frac{1}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.定義方程f(x)=f′(x)的實(shí)數(shù)根x0叫做函數(shù)f(x)的“新駐點(diǎn)”,若函數(shù)g(x)=x3-1,h(x)=2x,φ(x)=ln(x+1)的“新駐點(diǎn)”分別為α,β,γ,則α,β,γ的大小關(guān)系為( 。
A.α>β>γB.β>α>γC.γ>α>βD.β>γ>α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知OABC是四面體,M、N分別是OA,BC的中點(diǎn),點(diǎn)G在MN上且$\overrightarrow{MG}$=$\frac{2}{3}$$\overrightarrow{MN}$,若$\overrightarrow{OG}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$,則(x,y,z)為( 。
A.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{3}$)B.($\frac{1}{3}$,$\frac{1}{3}$,$\frac{1}{6}$)C.($\frac{1}{3}$,$\frac{1}{6}$,$\frac{1}{3}$)D.($\frac{1}{6}$,$\frac{1}{3}$,$\frac{1}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.兩個(gè)變量y與x的回歸模型中,分別選擇了4個(gè)不同模型,它們的相關(guān)指數(shù)R如下,其中擬合效果最好的模型是(  )
A.模型1的相關(guān)指數(shù) R=0.21B.模型2的相關(guān)指數(shù)R=0.80
C.模型1的相關(guān)指數(shù)R=0.50D.模型1的相關(guān)指數(shù)R=0.98

查看答案和解析>>

同步練習(xí)冊答案