14.設集合A={-1,0,1,2},B={x|-2≤x≤1},則A∩B=(  )
A.{-2,-1,0,1,2}B.{-1,0}C.{-1,0,1}D.{0,1,2}

分析 利用交集定義直接求解.

解答 解:集合A={-1,0,1,2},B={x|-2≤x≤1},
∴A∩B={-1,0,1}.
故選:C.

點評 本題考查交集的求法,是基礎題,解題時要認真審題,注意交集定義的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

4.直線ax+by+1=0與圓x2+y2=1相切,則a+b+ab的最大值為(  )
A.1B.-1C.$\sqrt{2}$+$\frac{1}{2}$D.$\sqrt{2}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.設i是虛數(shù)單位,復數(shù)z滿足z•(1+$\sqrt{2}$i)=-$\sqrt{2}$i,則復數(shù)z的虛部等于( 。
A.-$\frac{\sqrt{2}}{3}$B.$\sqrt{2}$C.2D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{3}}{3}$,過右焦點F2(c,0)垂直于x軸的直線與橢圓交于A,B兩點且|AB|=$\frac{4\sqrt{3}}{3}$,又過左焦點F1(-c,0)任作直線l交橢圓于點M
(1)求橢圓C的方程
(2)橢圓C上兩點A,B關于直線l對稱,求△AOB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.等比數(shù)列{an}的前n項和Sn=$\frac{1}{2}•{3^{n+1}}$+c(c為常數(shù)),若λan≤3+S2n恒成立,則實數(shù)λ的最大值是( 。
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.數(shù)列{an}中,若存在ak,使得“ak>ak-1且ak>ak+1”成立(其中k≥2,k∈N*),ak則稱為{an}的一個H值.現(xiàn)有如下數(shù)列:
①an=1-2n
②an=sinn
③an=$\frac{n-2}{{e}^{n-3}}$
④an=lnn-n
則存在H值的數(shù)列的序號為( 。
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知雙曲線C的中心在原點,焦點在y軸上,若雙曲線C的一條漸近線與直線$\sqrt{2}$x-y-1=0平行,則雙曲線C的離心率為(  )
A.$\frac{\sqrt{6}}{2}$B.$\sqrt{2}$C.$\sqrt{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.以點(2,-1)為圓心且與直線3x-4y+5=0相切的圓的方程為(  )
A.(x-2)2+(y+1)2=3B.(x+2)2+(y-1)2=3C.(x-2)2+(y+1)2=9D.(x+2)2+(y-1)2=9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.如圖所示,三棱柱ABC-A1B1C1的底面是邊長為2正三角形,D是A1C1的中點,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求證:A1B∥平面B1DC;
(Ⅱ)求二面角D-B1C-C1的余弦值.

查看答案和解析>>

同步練習冊答案