17、如圖,已知AB⊥平面BCD,BC⊥CD.請指出圖中所有互相垂直的平面,并說明理由.
分析:由已知中已知AB⊥平面BCD,BC⊥CD,結(jié)合線面垂直及面面垂直的判定定理,我們對三棱錐的四個(gè)平面:平面ABC,平面ABD,平面BCD和平面ACD之間的關(guān)系逐一進(jìn)行判斷,即可得到結(jié)論.
解答:解:如下圖所示:

①平面ABC⊥平面BCD.(1分)
因?yàn)锳B⊥平面BCD,AB?平面ABC,(3分)
所以平面ABC⊥平面BCD.(4分)
②平面ABD⊥平面BCD.(5分)
因?yàn)锳B⊥平面BCD,AB?平面ABD,(7分)
所以平面ABD⊥平面BCD.(8分)
③平面ABC⊥平面ACD.(9分)
因?yàn)锳B⊥平面BCD,CD?平面BCD,所以AB⊥CD;(11分)
又BC⊥CD,且AB∩BC=B,所以CD⊥平面ABC.(13分)
又CD?平面ACD,所以平面ABC⊥平面ACD.(14分)
點(diǎn)評:本題考查的知識點(diǎn)是平面與平面垂直的判定,其中熟練掌握線面垂直及面面垂直的判定定理是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•惠州模擬)如圖,已知AB⊥平面ACD,DE∥AB,△ACD是正三角形,AD=DE=2AB,且F是CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求平面BCE與平面ACD所成銳二面角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn)
(Ⅰ) 求證:平面BCE⊥平面CDE;
(Ⅱ) 求二面角B-EF-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊一模)如圖,已知AB⊥平面ACD,DE⊥平面ACD,△ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn).
(1)求證:AF∥平面BCE;
(2)求直線BF和平面BCE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,三角形ACD為等邊三角形,AD=DE=2AB,F(xiàn)為CD的中點(diǎn)
(1)求證:AF∥平面BCE;
(2)求證:平面BCE⊥平面CDE;
(3)求二面角F-BE-C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知AB⊥平面ACD,DE⊥平面ACD,且AC=AD=DE=2AB=4,F(xiàn)為CD的中點(diǎn).
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ) 若∠CAD=90°,求三棱錐F-BCE的體積.

查看答案和解析>>

同步練習(xí)冊答案