已知x、y滿足不等式
x+2y≥2
2x+y≥1
x≥0,y≥0
,求z=3x+y的最小值.
分析:本題處理的思路為:根據(jù)已知的約束條件
x+2y≥2
2x+y≥1
x≥0,y≥0
畫出滿足約束條件的可行域,再用角點法,求出目標函數(shù)的最小值.
解答:解:約束條件
x+2y≥2
2x+y≥1
x≥0,y≥0
對應(yīng)的平面區(qū)域如下圖示:
當直線z=3x+y過A(0,1)時,Z取得最小值1.
故z=3x+y的最小值為:1.
點評:本題考查的知識點是線性規(guī)劃,考查畫不等式組表示的可行域,考查數(shù)形結(jié)合求目標函數(shù)的最值.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值是( 。
A、21B、23C、25D、27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x、y滿足不等式
2x+y≤6
x+y≤5
x≥0,y≥0
,在這些點中,使目標函數(shù)z=6x+8y取得最大值的點的坐標是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•安徽模擬)已知x,y滿足不等式組
x+y≤4
ax+by-2a≤0
,且目標函數(shù)z=2x+y的最大值為7,則a+b=
0
0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2008•南匯區(qū)二模)(文)已知x,y滿足不等式組
x-y-1≥0
x+y-1≤0
x+2y+1≥0
則z=20-2y+x的最大值=
27
27

查看答案和解析>>

同步練習冊答案