某幾何體的三視圖如圖所示,計(jì)算該幾何體的體積.
考點(diǎn):由三視圖求面積、體積
專(zhuān)題:空間位置關(guān)系與距離
分析:由已知的三視圖可得:該幾何體是一個(gè)四棱柱與一個(gè)四棱錐組合而成的幾何體,計(jì)算出底面面積和高,代入柱體和錐體體積公式,可得答案.
解答: 解:由已知的三視圖可得:該幾何體是一個(gè)四棱柱與一個(gè)四棱錐組合而成的幾何體,
它們的底面面積均為4×4=16,
棱錐的高為2,故體積為:
1
3
×16×2=
32
3
,
棱柱的高為4,故體積為:4×16=64,
故組合體的體積V=
32
3
+64=
224
3
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是由三視圖求體積和表面積,解決本題的關(guān)鍵是得到該幾何體的形狀.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

三棱錐P-ABC中,底面ABC為邊長(zhǎng)為2
3
的正三角形,平面PBC⊥平面ABC,PB=PC=2,D 為AP上一點(diǎn),AD=2DP,O為底面三角形中心.
(Ⅰ) 求證:BD⊥AC;
(Ⅱ) 設(shè)M為PC中點(diǎn),求二面角M-BD-O的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
a1
=2
i
-
j
+
k
a2
=
j
+3
j
-2
k
,
a3
=-2
i
+
j
-3
k
a4
=3
i
+2
j
+5
k
,
i
j
,
k
是空間兩兩垂直的單位向量是否存在實(shí)數(shù)λμγ,使
a4
a1
a2
a3
成立?不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面內(nèi)有n(n≥2)條直線,任何兩條都不平行,任何三條不過(guò)同一點(diǎn),問(wèn)交點(diǎn)的個(gè)數(shù)f(n)為多少?并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某市教育局為了了解高三學(xué)生體育達(dá)標(biāo)情況,對(duì)全市高三學(xué)生進(jìn)行了體能測(cè)試,經(jīng)分析,全市學(xué)生體能測(cè)試成績(jī)X服從正態(tài)分布N(80,σ2)(滿分為100分),已知P(X<75)=0.3,P(X≥95)=0.1,現(xiàn)從該市高三學(xué)生隨機(jī)抽取三位同學(xué).
(1)求抽到的三位同學(xué)該次體能測(cè)試成績(jī)?cè)趨^(qū)間[80,85),[85,95),[95,100]各有一位同學(xué)的概率;
(2)記抽到的三位同學(xué)該次體能測(cè)試成績(jī)?cè)趨^(qū)間[75,85]的人數(shù)為ξ,求隨機(jī)變量ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

平面向量的集合A 到A的映射f(
x
)=
x
-2(
x
a
a
,其中
a
為常向量.若映射f滿足f(
x
)•f(
y
)=
x
y
對(duì)任意的
x
,
y
∈A恒成立,則
a
的坐標(biāo)不可能是(  )
A、(0,0)
B、(
2
4
,
2
4
C、(
2
2
,
2
2
D、(-
1
2
,
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y=(t2+t-1)x2-2(a+t)2x+(t2+3at+b)對(duì)任何實(shí)數(shù)t都與x軸交于P(1,0)點(diǎn),又設(shè)拋物線C與x軸的另一交點(diǎn)為Q(m,0),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè){an}為等比數(shù)列,其中a4=2,a5=5,閱讀如圖所示的程度框圖,運(yùn)行相應(yīng)的程序,則輸出結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

給定區(qū)間D,對(duì)于函數(shù)d=2及任意的f(x)、g(x)(其中x1>x2),若不等式f(x1)-g(x1)>f(x2)-g(x2)恒成立,則稱函數(shù)f(x)是相對(duì)于函數(shù)g(x)在區(qū)間上的“漸進(jìn)函數(shù)”,已知=f(x)=x2+2ax是相對(duì)于函數(shù)g(x)=x+3在區(qū)間[a,a+2]上的“漸進(jìn)函數(shù)”,則實(shí)數(shù)l的取值范圍是( 。
A、a>
1
4
B、a≤
1
4
C、a≥-
3
4
D、a≤-
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案