分析 作出不等式組對(duì)于的平面區(qū)域,利用數(shù)形結(jié)合即可得到結(jié)論.
解答 解:作出不等式組對(duì)于的平面區(qū)域如圖:
設(shè)z=3x+2y,則y=$-\frac{3}{2}x+\frac{z}{2}$,
平移直線y=$-\frac{3}{2}x+\frac{z}{2}$,由圖象可知當(dāng)直線y=$-\frac{3}{2}x+\frac{z}{2}$,
經(jīng)過(guò)點(diǎn)C時(shí),直線y=$-\frac{3}{2}x+\frac{z}{2}$的截距最大,此時(shí)z最大,
由$\left\{\begin{array}{l}{x+y=1}\\{x+2y=1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=1}\\{y=0}\end{array}\right.$,
即C(1,0),
此時(shí)zmax=3×1+2×0=3,
故答案為:3
點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | -6 | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $(\frac{π}{12},0)$ | B. | $(\frac{π}{6},0)$ | C. | $(-\frac{π}{12},0)$ | D. | $(\frac{π}{3},0)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x)=$\frac{x+1}{x+2}$ | B. | f(x)=$\frac{x}{x+1}$ | C. | f(x)=$\frac{x-1}{x}$ | D. | f(x)=$\frac{1}{x+2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com