4.若實(shí)數(shù)x,y滿足不等式組$\left\{{\begin{array}{l}{x-y+5≥0}\\{x+y≥0}\\{x≤3}\end{array}}\right.$則2x+4y的最小值是(  )
A.6B.-6C.4D.2

分析 利用線性規(guī)劃的知識(shí),根據(jù)目標(biāo)函數(shù)的幾何意義,結(jié)合數(shù)形結(jié)合即可求出2x+4y的最小值.

解答 解:作出不等式組對(duì)應(yīng)的平面區(qū)域如圖:
設(shè)z=2x+4y得y=-$\frac{1}{2}$x+$\frac{z}{4}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{4}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{z}{4}$經(jīng)過(guò)點(diǎn)C時(shí),
直線y=-$\frac{1}{2}$x+$\frac{z}{4}$的截距最小,此時(shí)z最小,
由$\left\{\begin{array}{l}{x=3}\\{x+y=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=3}\\{y=-3}\end{array}\right.$,
即C(3,-3),
此時(shí)z=2x+4y=2×3+4×(-3)=6-12=-6.
故選:B

點(diǎn)評(píng) 本題主要考查線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.觀察如表:
x-3-2-1123
f(x)51-1-335
g(x)1423-2-4
則f[g(3)-f(-1)]=( 。
A.3B.4C.-3D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.從1003名學(xué)生中選出50個(gè)代表,先用簡(jiǎn)單隨機(jī)抽樣剔除3人,再將剩下的1000人均分成20組,采用系統(tǒng)抽樣方法選出50人,則每個(gè)人被選中的概率均為( 。
A.$\frac{1}{50}$B.$\frac{1}{20}$C.$\frac{20}{1003}$D.$\frac{50}{1003}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知f(x)=$\left\{\begin{array}{l}{(3-a)x+1,x<1}\\{{a}^{x},x≥1}\end{array}\right.$,若函數(shù)f(x)是R上的增函數(shù),則a的取值范圍是( 。
A.(1,3)B.(1,2)C.[2,3)D.(1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)集合A={x|-2<x<4},B={-2,1,2,4},則A∩B=( 。
A.{1,2}B.{-1,4}C.{-1,2}D.{2,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=xex-mx+m,若f(x)<0的解集為(a,b),其中b<0;不等式在(a,b)中有且只有一個(gè)整數(shù)解,則實(shí)數(shù)m的取值范圍是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知復(fù)數(shù)z滿足(5+12i)z=169,則$\overline{z}$=( 。
A.-5-12iB.-5+12iC.5-12iD.5+12i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知定義域?yàn)镽的偶函數(shù)f(x),其導(dǎo)函數(shù)為f'(x),對(duì)任意x∈[0,+∞),均滿足:xf'(x)>-2f(x).若g(x)=x2f(x),則不等式g(2x)<g(1-x)的解集是( 。
A.(-∞,-1)B.$({-∞,\frac{1}{3}})$C.$({-1,\frac{1}{3}})$D.$({-∞,-1})∪({\frac{1}{3},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.設(shè)實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}{x-y≥0}\\{x+y≤1}\\{x+2y≥1}\end{array}\right.$,則3x+2y的最大值為3.

查看答案和解析>>

同步練習(xí)冊(cè)答案