8.已知拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),其焦點(diǎn)為F,且|MF|=2.
(Ⅰ)求拋物線C的方程;
(Ⅱ)設(shè)E為y軸上異于原點(diǎn)的任意一點(diǎn),過(guò)點(diǎn)E作不經(jīng)過(guò)原點(diǎn)的兩條直線分別與拋物線C和圓F:(x-1)2+y2=1相切,切點(diǎn)分別為A,B,求證:A、B、F三點(diǎn)共線.

分析 (Ⅰ)利用拋物線的定義,結(jié)合拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),且|MF|=2,求出p,即可求拋物線C的方程;
(Ⅱ)設(shè)EA:y=kx+t聯(lián)立$\left\{\begin{array}{l}y=kx+t\\{y^2}=4x\end{array}\right.$,消去y,可得k2x2+(2kt-4)x+t2=0,利用直線EA與拋物線C相切,得到kt=1代入$\frac{1}{t^2}{x^2}-2x+{t^2}=0$,求出A的坐標(biāo);由幾何性質(zhì)可以判斷點(diǎn)O,B關(guān)于直線EF:y=-tx+t對(duì)稱,求出B的坐標(biāo),證明kAF=kBF,即A,B,F(xiàn)三點(diǎn)共線;當(dāng)t=±1時(shí),A(1,±2),B(1,±1),此時(shí)A,B,F(xiàn)共線.

解答 (I)解:拋物線C的準(zhǔn)線方程為:$x=-\frac{p}{2}$,
∴$|MF|=m+\frac{p}{2}=2$,
又拋物線C:y2=2px(p>0)過(guò)點(diǎn)M(m,2),
∴4=2pm,即$4=2p(2-\frac{p}{2})$…(2分)
∴p2-4p+4=0,∴p=2,
∴拋物線C的方程為y2=4x.…(4分)
(II)證明;設(shè)E(0,t)(t≠0),已知切線不為y軸,設(shè)EA:y=kx+t聯(lián)立$\left\{\begin{array}{l}y=kx+t\\{y^2}=4x\end{array}\right.$,消去y,可得k2x2+(2kt-4)x+t2=0
∵直線EA與拋物線C相切,∴△=(2kt-4)2-4k2t2=0,即kt=1.
代入$\frac{1}{t^2}{x^2}-2x+{t^2}=0$,∴x=t2,即A(t2,2t),…(6分)
設(shè)切點(diǎn)B(x0,y0),則由幾何性質(zhì)可以判斷點(diǎn)O,B關(guān)于直線EF:y=-tx+t對(duì)稱,
則$\left\{\begin{array}{l}\frac{y_0}{x_0}×\frac{t-0}{0-1}=-1\\ \frac{y_0}{2}=-t•\frac{x_0}{2}+t\end{array}\right.$,解得:$\left\{\begin{array}{l}{x_0}=\frac{{2{t^2}}}{{{t^2}+1}}\\{y_0}=\frac{2t}{{{t^2}+1}}\end{array}\right.$,即$B(\frac{{2{t^2}}}{{{t^2}+1}},\frac{2t}{{{t^2}+1}})$…(8分)
直線AF的斜率為${k_{AF}}=\frac{2t}{{{t^2}-1}}(t≠±1)$,
直線BF的斜率為${k_{BF}}=\frac{{\frac{2t}{{{t^2}+1}}-0}}{{\frac{{2{t^2}}}{{{t^2}+1}}-1}}=\frac{2t}{{{t^2}-1}}(t≠±1)$,∴kAF=kBF,即A,B,F(xiàn)三點(diǎn)共線.…(10分)
當(dāng)t=±1時(shí),A(1,±2),B(1,±1),此時(shí)A,B,F(xiàn)共線.
綜上:A,B,F(xiàn)三點(diǎn)共線.…(12分)

點(diǎn)評(píng) 本題考查拋物線的方程,考查直線與拋物線的位置關(guān)系,考查直線斜率的計(jì)算,考查學(xué)生分析解決問(wèn)題的能力,計(jì)算量大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)f′(x)是奇函數(shù)f(x)(x∈R)的導(dǎo)函數(shù),f(-2)=0,當(dāng)x>0時(shí),xf′(x)-f(x)>0,則使得f(x)>0成立的x的取值范圍是(-2,0)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖是函數(shù)$f(x)=Asin(ωx+φ),(A>0,ω>0,|φ|<\frac{π}{2})$的圖象的一部分.
(1)求函數(shù)y=f(x)的解析式.
(2)若$f(α+\frac{π}{12})=\frac{3}{2},α∈[\frac{π}{2},π],求tan2α$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)$f(x)=lg\frac{2-x}{2+x}$,若f(m+1)<-f(-1),則實(shí)數(shù)m的取值范圍是( 。
A.(0,+∞)B.(-1,0)C.(0,1)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=1+x-alnx(a∈R)
(Ⅰ)求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)當(dāng)f(x)有最小值,且最小值大于2a時(shí),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知直角梯形ABCD中,AB∥CD,∠A=$\frac{π}{2}$,AD=1,AB=2CD=4,E為AB中點(diǎn),沿線段DE將△ADE折起到△A1DE,使得點(diǎn)A1在平面EBCD上的射影H在直線CD上.
(Ⅰ)求證:平面A1EC⊥平面A1DC;
(Ⅱ)求直線A1B與平面EBCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知橢圓$\frac{{x}^{2}}{k}$+$\frac{{y}^{2}}{k+2}$=1的短軸端點(diǎn)在以橢圓兩焦點(diǎn)連線段為直徑的圓內(nèi),則k的取值范圍為( 。
A.k>2B.0<k<2C.0<k<4D.k>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知某幾何體的三視圖如圖所示(單位:cm),則此幾何體的體積為$\frac{8}{3}$,表面積為$6+2\sqrt{5}+2\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知函數(shù)f(x)=bx-axlnx(a>0)的圖象在點(diǎn)(1,f(1))處的切線與直線平y(tǒng)=(1-a)x行.
(1)若函數(shù)y=f(x)在[e,2e]上是減函數(shù),求實(shí)數(shù)a的最小值;
(2)設(shè)g(x)=$\frac{f(x)}{lnx}$,若存在x1∈[e,e2],使g(x1)≤$\frac{1}{4}$成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案