11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{2^x},x≤0\end{array}\right.$,若$f(a)>\frac{1}{2}$,則實數(shù)a的取值范圍是( 。
A.$({0,\frac{{\sqrt{3}}}{3}})$B.(-1,0]C.$({-1,\frac{{\sqrt{3}}}{3}})$D.$({-1,0})∪({0,\frac{{\sqrt{3}}}{3}})$

分析 利用分段函數(shù),結(jié)合已知條件,列出不等式組,轉(zhuǎn)化求解即可.

解答 解:由題意,得$\left\{\begin{array}{l}{log_{\frac{1}{3}}}x>\frac{1}{2}\\ x>0\end{array}\right.$或$\left\{\begin{array}{l}{2^x}>\frac{1}{2}\\ x≤0\end{array}\right.$,解得$0<a<\frac{{\sqrt{3}}}{3}$或-1<a≤0,
即實數(shù)a的取值范圍為$({-1,\frac{{\sqrt{3}}}{3}})$,
故選C.

點評 本題考查分段函數(shù)的應(yīng)用,不等式組的求解,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.多項式$({4{x^2}-2}){({1+\frac{1}{x^2}})^5}$展開式中的常數(shù)項是18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)$f(x)=sin(ωx+φ)(ω>0,|φ|<\frac{π}{2})$的最小正周期為π,f(x)的圖象向左平移$\frac{π}{3}$個單位后關(guān)于直線x=0對稱,則$f(x+\frac{π}{12})+f(x-\frac{π}{6})$的單調(diào)遞增區(qū)間為(  )
A.[kπ-$\frac{11π}{24}$,kπ+$\frac{π}{24}$](k∈Z)B.$[kπ+\frac{3π}{8},kπ+\frac{7π}{8}](k∈Z)$
C.$[2kπ-\frac{π}{4},2kπ+\frac{3π}{4}](k∈Z)$D.$[2kπ+\frac{3π}{4},2kπ+\frac{7π}{4}](k∈Z)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知全集U=R,集合A={x|x2+x-6>0},B={y|y=2x-1,x≤2},則(∁UA)∩B=(  )
A.[-3,3]B.[-1,2]C.[-3,2]D.(-1,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左右焦點分別為F1(-c,0),F(xiàn)2(c,0),以線段F1F2為直徑的圓與雙曲線在第二象限的交點為P,若直線PF2與圓E:(x-$\frac{c}{2}$)2+y2=$\frac{^{2}}{16}$相切,則雙曲線的漸近線方程是(  )
A.y=±xB.y=±2xC.y=±$\sqrt{3}$xD.y=±$\sqrt{2}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)復(fù)數(shù)$z=1+\frac{1}{i^3}$,則z的共軛復(fù)數(shù)是( 。
A.1B.1+iC.-1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.水是地球上寶貴的資源,由于價格比較便宜在很多不缺水的城市居民經(jīng)常無節(jié)制的使用水資源造成嚴(yán)重的資源浪費.某市政府為了提倡低碳環(huán)保的生活理念鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)x(噸),一位居民的月用水量不超過x的部分按平價收費,超出x的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[1,1.5),…,[4,4.5)分成9組,制成了如圖所示的頻率分布直方圖.
(1)若全市居民中月均用水量不低于3噸的人數(shù)為3.6萬,試估計全市有多少居民?并說明理由;
(2)若該市政府?dāng)M采取分層抽樣的方法在用水量噸數(shù)為[1,1.5)和[1.5,2)之間選取7戶居民作為議價水費價格聽證會的代表,并決定會后從這7戶家庭中按抽簽方式選出4戶頒發(fā)“低碳環(huán)保家庭”獎,設(shè)X為用水量噸數(shù)在[1,1.5)中的獲獎的家庭數(shù),Y為用水量噸數(shù)在[1.5,2)中的獲獎家庭數(shù),記隨機(jī)變量Z=|X-Y|,求Z的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實數(shù)a的取值范圍是(  )
A.(1,+∞)B.(1,3)C.(0,1)∪(1,3)D.$[\frac{3}{2},3)$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)z=(1+2i)2,其中i為虛數(shù)單位,則z的實部為-3.

查看答案和解析>>

同步練習(xí)冊答案