20.已知$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),那么實(shí)數(shù)a的取值范圍是( 。
A.(1,+∞)B.(1,3)C.(0,1)∪(1,3)D.$[\frac{3}{2},3)$

分析 根據(jù)一次函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì)結(jié)合函數(shù)的單調(diào)性求出a的范圍即可.

解答 解:∵$f(x)=\left\{\begin{array}{l}(3-a)x-a,x<1\\{log_a}x,x≥1\end{array}\right.$是(-∞,+∞)上的增函數(shù),
∴$\left\{\begin{array}{l}{3-a>0}\\{a>1}\\{3-a-a≤0}\end{array}\right.$,解得:$\frac{3}{2}$≤a<3,
故選:D.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性問(wèn)題,考查一次函數(shù)以及對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.下方莖葉圖如圖1,為高三某班50名學(xué)生的數(shù)學(xué)考試成績(jī),算法框圖如圖2中輸入的ai為莖葉圖中的學(xué)生成績(jī),則輸出的m,n分別是( 。
A.m=26,n=12B.m=38,n=12C.m=12,n=12D.m=24,n=10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{3}}}x,x>0\\{2^x},x≤0\end{array}\right.$,若$f(a)>\frac{1}{2}$,則實(shí)數(shù)a的取值范圍是( 。
A.$({0,\frac{{\sqrt{3}}}{3}})$B.(-1,0]C.$({-1,\frac{{\sqrt{3}}}{3}})$D.$({-1,0})∪({0,\frac{{\sqrt{3}}}{3}})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在正方體ABCD-A1B1C1D1中,過(guò)點(diǎn)A作平面α平行平面BDC1,平面α與平面A1ADD1交于直線m,平面α與平面A1ABB1交于直線n,則直線m與直線n所成的角為( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知約束條件$\left\{\begin{array}{l}{x-y≤0}\\{x+y-2≤0}\\{y≥0}\\{x+ay-1≥0}\end{array}\right.$表示的平面區(qū)域是一個(gè)三角形,則a的取值范圍是(0,1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.如圖所示是用模擬方法估計(jì)圓周率π值的程序框圖,m表示估計(jì)結(jié)果,則圖中空白處應(yīng)填入(  )
A.$m=\frac{n}{4000}$B.$m=\frac{n}{1000}$C.$m=\frac{n}{500}$D.$m=\frac{n}{250}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知函數(shù)f(x)的定義域?yàn)镈,若對(duì)于?a,b,c∈D,f(a),f(b),f(c)分別為某個(gè)三角形的三邊長(zhǎng),則稱f(x)為“三角形函數(shù)”.給出下列四個(gè)函數(shù):
①f(x)=lg(x+1)(x>0);
②f(x)=4-cosx;
③$f(x)={x^{\frac{1}{2}}}(1≤x≤16)$;
④$f(x)=\frac{{{3^x}+2}}{{{3^x}+1}}$
其中為“三角形函數(shù)”的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.將一溫度調(diào)節(jié)器放置在貯存著某種液體的容器內(nèi),調(diào)節(jié)器整定在d℃,液體的溫度X(以℃計(jì))是一個(gè)隨機(jī)變量,且X~N(d,0.52).
(1)若d=90℃,求X小于89℃的概率.
(2)若要求保持液體的溫度至少為80℃的概率不低于0.99,問(wèn)d至少為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知1+i是關(guān)于x的方程2x2+px+q=0(p,q∈R)的一個(gè)根,則|p+qi|(  )
A.$\sqrt{2}$B.$2\sqrt{2}$C.$3\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案