化簡:
(e+e-1)2-4
考點(diǎn):根式與分?jǐn)?shù)指數(shù)冪的互化及其化簡運(yùn)算
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用完全平方差公式和完全平方和公式求解.
解答: 解:
(e+e-1)2-4

=
e2+e-2-2

=
(e-e-1)2

=e-
1
e
點(diǎn)評:本題考查根式與分?jǐn)?shù)的化簡求值,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意完全平方公式的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式或不等式組.
(1)
-2x+1<x+4
x
2
-
x-1
3
≤1

(2)-x2+7x>6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=logax(a>0,且a≠1)在(0,+∞)上單調(diào)遞增,則f(a+1)與f(2)的大小關(guān)系是(  )
A、f(a+1)=f(2)
B、f(a+1)>f(2)
C、f(a+1)<f(2)
D、不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)P在橢圓
x2
16
+
y2
9
=1上,求一點(diǎn)P,使它到兩焦點(diǎn)的距離之積等于短半軸的平方,則P點(diǎn)坐標(biāo)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知奇函數(shù)f(x)的定義域?yàn)椋?∞,0)∪(0,+∞),且f(x)在(0,+∞)上是增函數(shù),f(1)=0.
(1)求證:函數(shù)f(x)在(-∞,0)上是增函數(shù);
(2)解關(guān)于x的不等式f(x)<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
0≤x≤1
0≤y≤2
y-2x≥1
,求z=2y-2x+4的最大值及最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R的減函數(shù)f(x)滿足f(x+y)=f(x)•f(y),對于任意的x∈R,總有f(x)>0,且f(1)=
1
2
,則使f(a)>4成立a的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

要得到函數(shù)y=
2
cosx的圖象,只需將函數(shù)y=
2
cos(2x+
π
4
)的圖象上所有的點(diǎn)( 。
A、橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向左平行移動
π
4
個單位長度
B、橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向右平行移動
π
4
個單位長度
C、橫坐標(biāo)縮短到原來的
1
2
倍(縱坐標(biāo)不變),再向左平行移動
π
8
個單位長度
D、橫坐標(biāo)伸長到原來的2倍(縱坐標(biāo)不變),再向右平行移動
π
4
個單位長度

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|-1≤x≤2},B={x|x2-(2m+1)x+2m<0}.
(1)當(dāng)m<
1
2
時(shí),化簡集合B;
(2)若A∪B=A,求實(shí)數(shù)m的取值范圍;
(3)若∁RA∩B中只有一個整數(shù),求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案