【題目】如圖,點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,則PA與BD所成角的度數(shù)為(
A.30°
B.45°
C.60°
D.90°

【答案】C
【解析】解:如圖,以D為坐標(biāo)原點(diǎn),DA所在直線為x軸,DC所在線為y軸,DP所在線為z軸,建立空間坐標(biāo)系, ∵點(diǎn)P在正方形ABCD所在平面外,PD⊥平面ABCD,PD=AD,令PD=AD=1
∴A(1,0,0),P(0,0,1),B(1,1,0),D(0,0,0)
=(1,0,﹣1), =(﹣1,﹣1,0)
∴cosθ= =
故兩向量夾角的余弦值為 ,即兩直線PA與BD所成角的度數(shù)為60°.
故選C
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解異面直線及其所成的角的相關(guān)知識(shí),掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;2、補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了促進(jìn)學(xué)生的全面發(fā)展,鄭州市某中學(xué)重視學(xué)生社團(tuán)文化建設(shè),現(xiàn)用分層抽樣的方法從“話劇社”,“創(chuàng)客社”,“演講社”三個(gè)金牌社團(tuán)中抽取6人組成社團(tuán)管理小組,有關(guān)數(shù)據(jù)見表(單位:人):

社團(tuán)名稱

成員人數(shù)

抽取人數(shù)

話劇社

50

a

創(chuàng)客社

150

b

演講社

100

c


(1)求a,b,c的值;
(2)若從“話劇社”,“創(chuàng)客社”,“演講社”已抽取的6人中任意抽取2人擔(dān)任管理小組組長(zhǎng),求這2人來自不同社團(tuán)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】三棱錐ABCD中,BC=DC=AB=AD= ,BD=2,平面ABD⊥平面BCD,O為BD的中點(diǎn),P、Q分別為線段AO,BC上的動(dòng)點(diǎn),且AP=CQ,求三棱錐PQCO體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四名選手 A、B、C、D 參加射擊、拋球、走獨(dú)木橋三項(xiàng)比賽,每個(gè)選手在各項(xiàng)比賽中獲得合格、不合格機(jī)會(huì)相等,比賽結(jié)束,評(píng)委們會(huì)根據(jù)選手表現(xiàn)給每位選手評(píng)定比賽成績(jī),根據(jù)比賽成績(jī),對(duì)前兩名進(jìn)行獎(jiǎng)勵(lì).
(1)選手 D 至少獲得兩個(gè)合格的概率;
(2)選手 C、D 只有一人得到獎(jiǎng)勵(lì)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項(xiàng)和Sn=3n2+8n,{bn}是等差數(shù)列,且an=bn+bn+1 . (Ⅰ)求數(shù)列{bn}的通項(xiàng)公式;
(Ⅱ)令cn= ,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)m,n∈R,若直線l:mx+ny﹣1=0與x軸相交于點(diǎn)A,與y軸相交于點(diǎn)B,且l與圓x2+y2=4相交所得弦的長(zhǎng)為2,O為坐標(biāo)原點(diǎn),則△AOB面積的最小值為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù) 若函數(shù)g(x)=f(x)﹣k有3個(gè)零點(diǎn),則實(shí)數(shù)k的取值范圍為( )
A.(0,+∞)
B.(0,1)
C.[1,+∞)
D.[1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(ax﹣1)(x+b),如果不等式f(x)>0的解集是(﹣1,3),則不等式f(﹣x)<0的解集是(
A.(﹣∞,﹣1)∪(3,+∞)
B.(﹣3,1)
C.(﹣∞,﹣3)∪(1,+∞)
D.(﹣1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了得到周期y=sin(2x+ )的圖象,只需把函數(shù)y=sin(2x﹣ )的圖象(
A.向左平移 個(gè)單位長(zhǎng)度
B.向右平移 個(gè)單位長(zhǎng)度
C.向左平移 個(gè)單位長(zhǎng)度
D.向右平移 個(gè)單位長(zhǎng)度

查看答案和解析>>

同步練習(xí)冊(cè)答案