分析 (Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow$=2$\sqrt{3}$sinxcosx+sin2x-cos2x=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),利用三角函數(shù)的性質,即可求出f(x)取最大值時x的取值集合;
(Ⅱ)先求出C,再求出△ABC的面積.
解答 解:(Ⅰ)f(x)=$\overrightarrow{a}$•$\overrightarrow$=2$\sqrt{3}$sinxcosx+sin2x-cos2x=$\sqrt{3}$sin2x-cos2x=2sin(2x-$\frac{π}{6}$),…(3分)
當2x-$\frac{π}{6}$=2kπ+$\frac{π}{2}$(k∈Z)時,f(x)max=2,
對應x的集合為{x|x=kπ+$\frac{π}{3}$,k∈Z}.…(6分)
(Ⅱ)由f(C)=2,得2sin(2C-$\frac{π}{6}$)=1,
∵0<C<π,∴-$\frac{π}{6}$<2C-$\frac{π}{6}$<$\frac{11π}{6}$,∴2C-$\frac{π}{6}$=$\frac{π}{2}$,解得C=$\frac{π}{3}$,…(8分)
又∵a+b=2$\sqrt{3}$,c=$\sqrt{6}$,由余弦定理得c2=a2+b2-ab,
∴12-3ab=6,即ab=2,…(10分)
由面積公式得△ABC面積為S△ABC=$\frac{1}{2}×2×\frac{\sqrt{3}}{2}$=$\frac{\sqrt{3}}{2}$.…(12分)
點評 本題考查三角函數(shù)的圖象與性質,考查余弦定理,考查向量知識的運用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | b<a<c | B. | a<b<c | C. | b<c<a | D. | c<a<b |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 105 | B. | 120 | C. | 56 | D. | 84 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | 3 | C. | $\sqrt{6}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com