【題目】設(shè)是數(shù)列的前項(xiàng)和, .

(1)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);

(2)設(shè),求數(shù)列的前項(xiàng)和.

【答案】(1)證明見(jiàn)解析, ;(2).

【解析】試題分析:當(dāng)數(shù)列提供之間的遞推關(guān)系時(shí),要數(shù)列是等差數(shù)列,只需利用,轉(zhuǎn)化為、之間的關(guān)系,證明某數(shù)列是等差數(shù)列,就是證明第n+1項(xiàng)與第n項(xiàng)的比是一個(gè)常數(shù),這個(gè)分析給證明提供一個(gè)暗示,有了證明的目標(biāo),從遞推關(guān)系式向著這個(gè)目標(biāo)進(jìn)行等價(jià)變形,就可得出所要證明的式子,達(dá)到證明的目的;已知數(shù)列的前n項(xiàng)和,求通項(xiàng)公式分兩步,第一步n=1 時(shí),求出首項(xiàng),第二步,當(dāng)時(shí)利用前n項(xiàng)和與前n-1項(xiàng)和作差求出第n項(xiàng),若首項(xiàng)滿足后者,則可書寫統(tǒng)一的通項(xiàng)公式,若首項(xiàng)不滿足,則通項(xiàng)公式要寫成分段函數(shù)形式,有關(guān)數(shù)列求和問(wèn)題,主要方法有倒序相加法、錯(cuò)位相減法、分組求和法、公式法等,要根據(jù)數(shù)列通項(xiàng)的形式特點(diǎn)采用相應(yīng)的方法求和.

試題解析:

(1),∴,

,

∴數(shù)列是等差數(shù)列.

由上知數(shù)列是以2為公差的等差數(shù)列,首項(xiàng)為

,∴

(或由),

由題知, ,

綜上, .

(2)由(1)知 ,

,

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機(jī)抽取100位員工進(jìn)行調(diào)查,得到如下的頻率分布直方圖:

(1)試由此圖估計(jì)該公司員工的月平均工資;

(2)該公司工資發(fā)放是以員工的營(yíng)銷水平為重要依據(jù)來(lái)確定的,一般認(rèn)為,工資低于4500。元的員工屬于學(xué)徒階段,沒(méi)有營(yíng)銷經(jīng)驗(yàn),若進(jìn)行營(yíng)銷將會(huì)失敗;高于4500元的員工是具備營(yíng)銷成熟員工,基進(jìn)行營(yíng)銷將會(huì)成功,F(xiàn)將該樣本按照“學(xué)徒階段工資”、“成熟員工工資”分成兩層,進(jìn)行分層抽樣,從中抽出5人,在這5人中任選2人進(jìn)行營(yíng)銷活動(dòng)。活動(dòng)中,每位員工若營(yíng)銷成功,將為公司贏得3萬(wàn)元,否則公司將損失1萬(wàn)元。試問(wèn)在此次比賽中公司收入多少萬(wàn)元的可能性最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,若Ω是長(zhǎng)方體ABCD﹣A1B1C1D1被平面EFGH截去幾何體EFGHB1C1后得到的幾何體,其中E為線段A1B1上異于B1的點(diǎn),F(xiàn)為線段BB1上異于B1的點(diǎn),且EH∥A1D1 , 則下列結(jié)論中不正確的是( 。

A.EH∥FG
B.四邊形EFGH是矩形
C.Ω是棱柱
D.Ω是棱臺(tái)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD為正方形,PD⊥平面ABCD,PD=AB,E,F(xiàn),G,H分別為PC、PD、BC、PA的中點(diǎn).
求證:(1)PA∥平面EFG;
(2)DH⊥平面EFG.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,分別是橢圓的左、右焦點(diǎn).

(1)若點(diǎn)是第一象限內(nèi)橢圓上的一點(diǎn), ,求點(diǎn)的坐標(biāo);

(2)設(shè)過(guò)定點(diǎn)的直線與橢圓交于不同的兩點(diǎn),且為銳角(其中為坐標(biāo)原點(diǎn)),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)是數(shù)列的前項(xiàng)和, .

(1)求證:數(shù)列是等差數(shù)列,并求的通項(xiàng);

(2)設(shè),求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形的兩條對(duì)角線相交于點(diǎn), 邊所在的直線的方程為,點(diǎn)在邊所在的直線上. 

(1)求邊所在直線的方程;

(2)求矩形外接圓的方程;

(3)過(guò)點(diǎn)的直線被矩形的外接圓截得的弦長(zhǎng)為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某醫(yī)學(xué)院欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關(guān)系,該協(xié)會(huì)分別到氣象局與某醫(yī)院抄錄了1到6月份每月10號(hào)的晝夜溫差情況與因患感冒而就診的人數(shù),得到數(shù)據(jù)資料見(jiàn)下表:

該院確定的研究方案是:先從這六組數(shù)據(jù)中選取2組,用剩下的4組數(shù)據(jù)求線性回歸方程,再用被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).

(Ⅰ)求選取的2組數(shù)據(jù)恰好是不相鄰的兩個(gè)月的概率;

(Ⅱ)已知選取的是1月與6月的兩組數(shù)據(jù).

(1)請(qǐng)根據(jù)2到5月份的數(shù)據(jù),求出就診人數(shù)關(guān)于晝夜溫差的線性回歸方程;

(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)2人,則認(rèn)為得到的線性回歸方程是理想的,試問(wèn)該協(xié)會(huì)所得線性回歸方程是否理想?

(參考公式和數(shù)據(jù):

)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知直線與拋物線相切,且與軸的交點(diǎn)為,點(diǎn).若動(dòng)點(diǎn)與兩定點(diǎn)所構(gòu)成三角形的周長(zhǎng)為6.

(Ⅰ) 求動(dòng)點(diǎn)的軌跡的方程;

(Ⅱ) 設(shè)斜率為的直線交曲線兩點(diǎn),當(dāng),且位于直線的兩側(cè)時(shí),證明: .

查看答案和解析>>

同步練習(xí)冊(cè)答案