【題目】已知,分別是橢圓的左、右焦點.

(1)若點是第一象限內橢圓上的一點, ,求點的坐標;

(2)設過定點的直線與橢圓交于不同的兩點,且為銳角(其中為坐標原點),求直線的斜率的取值范圍.

【答案】(

【解析】試題分析:(1)首先得到焦點的坐標,點滿足兩個條件,一個是點在橢圓上,滿足橢圓方程,另一個是將 ,轉化為坐標表示,這樣兩個方程兩個未知數(shù),解方程組;(2)首項設過點的直線為 ,與方程聯(lián)立,得到根與系數(shù)的關系, ,以及 ,根據(jù)向量的數(shù)量積可知, 為銳角,即 ,這樣代入根與系數(shù)的關系,以及,共同求出的取值范圍.

試題解析:(1)易知.

,設,則

,又.

聯(lián)立,解得,故.

(2)顯然不滿足題設條件,可設的方程為,

聯(lián)立

,得.①

為銳角,

.②

綜①②可知的取值范圍是

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在下列命題中,正確的是( )

A. 垂直于同一個平面的兩個平面互相平行 B. 垂直于同一個平面的兩條直線互相平行

C. 平行于同一個平面的兩條直線互相平行 D. 平行于同一條直線的兩個平面互相平行

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知六棱錐P﹣ABCDEF的底面是正六邊形,PA⊥平面ABC.則下列結論不正確的是(  )

A.CD∥平面PAF
B.DF⊥平面PAF
C.CF∥平面PAB
D.CF⊥平面PAD

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)若上的最大值為,求實數(shù)的值;

(2)若對任意,都有恒成立,求實數(shù)的取值范圍;

(3)在(1)的條件下,設,對任意給定的正實數(shù),曲線 上是否存在兩點、,使得是以為坐標原點)為直角頂點的直角三角形,且此三角形斜邊中點在軸上?請說明理由。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知面垂直于圓柱底面, 為底面直徑, 是底面圓周上異于的一點, . 求證:

(1);

(2)求幾何體的最大體積

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】是數(shù)列的前項和, .

(1)求證:數(shù)列是等差數(shù)列,并求的通項;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)滿足f(x)=x2﹣2(a+2)x+a2 , g(x)=﹣x2+2(a﹣2)x﹣a2+8.設H1(x)=max{f(x),g(x)},H2(x)=min{f(x),g(x)}(max(p,q)表示p,q中的較大值,min(p,q)表示p,q中的較小值),記H1(x)的最小值為A,H2(x)的最大值為B,則A﹣B=( 。
A.a2﹣2a﹣16
B.a2+2a﹣16
C.-16
D.16

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)若曲線處的切線方程為.

(Ⅰ)求的值;

(Ⅱ)若對于任意,總有,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某學校在一次第二課堂活動中,特意設置了過關智力游戲,游戲共五關.規(guī)定第一關沒過者沒獎勵,過 關者獎勵件小獎品(獎品都一樣).下圖是小明在10次過關游戲中過關數(shù)的條形圖,以此頻率估計概率.

(Ⅰ)估計小明在1次游戲中所得獎品數(shù)的期望值;

(Ⅱ)估計小明在3 次游戲中至少過兩關的平均次數(shù);

(Ⅲ)估計小明在3 次游戲中所得獎品超過30件的概率.

查看答案和解析>>

同步練習冊答案