分析 (Ⅰ)通過(guò)證明PE⊥PD,PE⊥PC證明PE⊥平面PCD,然后推出平面PED⊥平面PCD.
(Ⅱ)設(shè)點(diǎn)P到平面CDE的距離為h,通過(guò)VE-PCD=VP-ECD,求解即可.
解答 (Ⅰ)證明:∵∠A=∠B=90°,∴PE⊥PD,PE⊥PC.
∵PD交PC于點(diǎn)P,PC,PD在平面PCD內(nèi),∴PE⊥平面PCD,
∵PE在平面PED內(nèi),∴平面PED⊥平面PCD.
(Ⅱ)解:設(shè)點(diǎn)P到平面CDE的距離為h,
依題意可知,三角形CDE是底邊長(zhǎng)為2,高為2的三角形,
所以其面積為$\frac{1}{2}×2×2=2$.
由(Ⅰ)知PE⊥平面PCD,易知△PCD是邊長(zhǎng)為2的等邊三角形,其面積為$\frac{{\sqrt{3}}}{4}×{2^2}=\sqrt{3}$,PE=1,
所以${V_{E-PCD}}=\frac{1}{3}×\sqrt{3}×1=\frac{{\sqrt{3}}}{3}$,
∵VE-PCD=VP-ECD,∴$\frac{1}{3}×2×h=\frac{{\sqrt{3}}}{3}$,∴$h=\frac{{\sqrt{3}}}{2}$.
點(diǎn)評(píng) 本題考查直線(xiàn)與平面垂直,平面與平面垂直的判定定理的應(yīng)用,幾何體的體積的求法,考查計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -$\frac{2}{5}+\frac{4}{5}$i | B. | $\frac{2}{5}+\frac{4}{5}$i | C. | $\frac{2}{5}-\frac{4}{5}$i | D. | -$\frac{2}{5}-\frac{4}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [$\frac{1}{2}$,$\sqrt{3}$] | B. | [1,$\sqrt{3}$] | C. | (-1,$\sqrt{3}$] | D. | (-1,$\frac{\sqrt{3}}{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $[{-\frac{5}{2},-1})∪[2,5)$ | B. | $[{-1,-\frac{2}{3}})∪[5,10)$ | C. | $({-\frac{4}{3},-1}]∪[5,10)$ | D. | $[{-\frac{4}{3},-1}]∪[5,10)$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com