某城市缺水問題比較突出,為了制定節(jié)水管理辦法,對(duì)全市居民某年的月均用水量進(jìn)行了抽樣調(diào)查,其中n位居民的月均用水量分別為x1,x2,…,xn(單位:噸),根據(jù)如圖所示的程序框圖,若n=2,且x1,x2分別為1,2,則輸出的s結(jié)果為( 。
A、
1
4
B、
1
3
C、
3
4
D、
3
2
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:n=2,且x1,x2分別為1,2,執(zhí)行程序框圖,寫出每次循環(huán)s1,s2,s的值,當(dāng)i<=n時(shí),計(jì)算S的值并輸出即可.
解答: 解:執(zhí)行程序框圖,有
n=2,x1=1,x2=2,s1=0,s2=0,i=1
i≤n條件成立,執(zhí)行循環(huán)體,
s1=s1+x1=1
s2=s2+x12=1
S=0
i=2
i≤n條件成立,執(zhí)行循環(huán)體,
s1=s1+x2=3
s2=s2+x22=5
S=
1
4

i=3
i≤n條件不成立,輸出S的值為
1
4
,
故選:A.
點(diǎn)評(píng):本題主要考察程序框圖和算法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列說法中:
①若f(x)=ax2+(2a+b)x+2(其中x∈[2a-1,a+4])是偶函數(shù),則實(shí)數(shù)b=2;
②f(x)=
2013-x2
+
x2-2013
既是奇函數(shù)又是偶函數(shù);
③已知f(x)是定義在R上的奇函數(shù),若當(dāng)x∈[0,+∞)時(shí),f(x)=x(1+x),則當(dāng)x∈R時(shí),f(x)=x(1+|x|);
④已知f(x)是定義在R上的不恒為零的函數(shù),且對(duì)任意的x,y∈R都滿足f(x•y)=x•f(y)+y•f(x),則f(x)是奇函數(shù).
其中正確說法的序號(hào)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知定義在R上的函數(shù)f(x)滿足f(x+2)=-f(x),當(dāng)x∈(-1,3]時(shí),f(x)=
1-x2
,x∈(-1,1]
t(1-|x-2|),x∈(1,3]
,其中t>0,若方程f(x)=
x
3
恰有3個(gè)不同的實(shí)數(shù)根,則t的取值范圍為(  )
A、(0,
4
3
B、(
2
3
,2)
C、(
4
3
,3)
D、(
2
3
,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列函數(shù)中,在其定義域是減函數(shù)的是( 。
A、f(x)=-x2+2x+1
B、f(x)=
1
x
C、f(x)=(
1
4
)|x|
D、f(x)=ln(2-x)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若y=f(x)的定義域是[-1,2],則函數(shù)f(x-1)+f(2x+1)的定義域是(  )
A、[-2,
1
2
]
B、[-1,
3
2
]
C、[0,1]
D、[0,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在D上的函數(shù)f(x),如果滿足:對(duì)任意x∈D,存在常數(shù)M>0,都有|f(x)|≤M成立,則稱f(x)是D上的有界函數(shù),其中M稱為函數(shù)f(x)的上界.
已知函數(shù)f(x)=1+a•(
1
3
)x
+(
1
9
)x
,
(1)當(dāng)a=-
1
2
時(shí),求函數(shù)f(x)在(-∞,0)上的值域,并判斷函數(shù)f(x)在(-∞,0)上是否為有界函數(shù),請(qǐng)說明理由;
(2)若函數(shù)f(x)在[0,+∞)上是以4為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC中,a、b、c是角A、B、C所對(duì)的邊,若B=45°,a=
2
,b=2,那么角A等于( 。
A、30°或150°
B、60°或120°
C、60°
D、30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=2sin(ωx+φ)-1,x∈R,其值域?yàn)?div id="kxyn8x2" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若集合A⊆{1,2,3},且A≠φ,則滿足條件的集合A的個(gè)數(shù)為
 
個(gè).

查看答案和解析>>

同步練習(xí)冊(cè)答案