已知向量,,曲線上一點(diǎn)到點(diǎn)的距離為,的中點(diǎn),為坐標(biāo)原點(diǎn),則等于(    )

A.            B.        C.              D.  

 

【答案】

B

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•崇明縣一模)如圖,已知橢圓C:
x2
a2
-
y2
b2
=1
(a>0,b>0)過點(diǎn)P(
2
,
6
),上、下焦點(diǎn)分別為F1、F2,向量
PF1
PF2
.直線l與橢圓交于A,B兩點(diǎn),線段AB中點(diǎn)為m(
1
2
,-
3
2
).
(1)求橢圓C的方程;
(2)求直線l的方程;
(3)記橢圓在直線l下方的部分與線段AB所圍成的平面區(qū)域(含邊界)為D,若曲線x2-2mx+y2+4y+m2-4=0與區(qū)域D有公共點(diǎn),試求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•成都一模)已知向量m=(x2,y-cx),n=(1,x+b)(x,y,b,c∈R)且m∥n,把其中x,y所滿足的關(guān)系式記為y=f(x).若f′(x)為f(x)的導(dǎo)函數(shù),F(xiàn)(x)=f(x)+af'(x)(a>0),且F(x)是R上的奇函數(shù).
(Ⅰ)求
ba
和c
的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間(用字母a表示);
(Ⅲ)當(dāng)a=2時(shí),設(shè)0<t<4且t≠2,曲線y=f(x)在點(diǎn)A(t,f(t))處的切線與曲線y=f(x)相交于點(diǎn)B(m,f(m))(A與B不重合),直線x=t與y=f(m)相交于點(diǎn)C,△ABC的面積為S,試用t表示△ABC的面積S(t);并求S(t)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)向量a=(a1,a2),b=(b1,b2)定義一種運(yùn)算“?”:a?b=(a1,a2)?(b1,b2)=(a1b1,a2b2),已知?jiǎng)狱c(diǎn)P、Q分別在曲線y=sinx和y=f(x)上運(yùn)動(dòng),且
OQ
=
m
?
OP
+
n
(其中為O坐標(biāo)原點(diǎn)),若 
m
=(
1
2
,3),
n
=(
π
6
,0),則y=f(x)
的最大值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•上海)在平面上,給定非零向量
b
,對(duì)任意向量
a
,定義
a′
=
a
-
2(
a
b
)
|
b
|2
b

(1)若
a
=(2,3),
b
=(-1,3),求
a′
;
(2)若
b
=(2,1),證明:若位置向量
a
的終點(diǎn)在直線Ax+By+C=0上,則位置向量
a′
的終點(diǎn)也在一條直線上;
(3)已知存在單位向量
b
,當(dāng)位置向量
a
的終點(diǎn)在拋物線C:x2=y上時(shí),位置向量
a′
終點(diǎn)總在拋物線C′:y2=x上,曲線C和C′關(guān)于直線l對(duì)稱,問直線l與向量
b
滿足什么關(guān)系?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•重慶一模)已知向量
a
=(
x
4
,
y
3
),
b
=(
x
4
,-
y
3
),曲線
a
b
=1上一點(diǎn)P到點(diǎn)F(5,0)的距離為11,Q為PF 的中點(diǎn),O為坐標(biāo)原點(diǎn),則|
OQ
|等于( 。

查看答案和解析>>

同步練習(xí)冊答案