解答:
解:(1)在Rt△ABD中,AB=5,AD=
,
由勾股定理得:BD=
=
.
∵S
△ABD=
BD•AE=
AB•AD,
∴AE=
=4.
在Rt△ABE中,AB=5,AE=4,由勾股定理得:BE=3.
(2)設(shè)平移中的三角形為△A′B′F′,如答圖2所示:
由對(duì)稱點(diǎn)性質(zhì)可知,∠1=∠2.
由平移性質(zhì)可知,AB∥A′B′,∠4=∠1,BF=B′F′=3.
①當(dāng)點(diǎn)F′落在AB上時(shí),
∵AB∥A′B′,
∴∠3=∠4,
∴∠3=∠2,
∴BB′=B′F′=3,即m=3;
②當(dāng)點(diǎn)F′落在AD上時(shí),
∵AB∥A′B′,
∴∠6=∠2,
∵∠1=∠2,∠5=∠1,
∴∠5=∠6,
又易知A′B′⊥AD,
∴△B′F′D為等腰三角形,
∴B′D=B′F′=3,
∴BB′=BD-B′D=
-3=
,即m=
.
(3)存在.理由如下:
在旋轉(zhuǎn)過(guò)程中,等腰△DPQ依次有以下4種情形:
①如答圖3-1所示,點(diǎn)Q落在BD延長(zhǎng)線上,且PD=DQ,易知∠2=2∠Q,
∵∠1=∠3+∠Q,∠1=∠2,
∴∠3=∠Q,
∴A′Q=A′B=5,
∴F′Q=F′A′+A′Q=4+5=9.
在Rt△BF′Q中,由勾股定理得:BQ=
=3
.
∴DQ=BQ-BD=3
-
;
②如答圖3-2所示,點(diǎn)Q落在BD上,且PQ=DQ,易知∠2=∠P,
∵∠1=∠2,
∴∠1=∠P,
∴BA′∥PD,則此時(shí)點(diǎn)A′落在BC邊上.
∵∠3=∠2,
∴∠3=∠1,
∴BQ=A′Q,
∴F′Q=F′A′-A′Q=4-BQ.
在Rt△BQF′中,由勾股定理得:BF′
2+F′Q
2=BQ
2,
即:3
2+(4-BQ)
2=BQ
2,
解得:BQ=
,
∴DQ=BD-BQ=
-=
;
③如答圖3-3所示,點(diǎn)Q落在BD上,且PD=DQ,易知∠3=∠4.
∵∠2+∠3+∠4=180°,∠3=∠4,
∴∠4=90°-
∠2.
∵∠1=∠2,
∴∠4=90°-
∠1.
∴∠A′QB=∠4=90°-
∠1,
∴∠A′BQ=180°-∠A′QB-∠1=90°-
∠1,
∴∠A′QB=∠A′BQ,
∴A′Q=A′B=5,
∴F′Q=A′Q-A′F′=5-4=1.
在Rt△BF′Q中,由勾股定理得:BQ=
=
,
∴DQ=BD-BQ=
-;
④如答圖3-4所示,點(diǎn)Q落在BD上,且PQ=PD,易知∠2=∠3.
∵∠1=∠2,∠3=∠4,∠2=∠3,
∴∠1=∠4,
∴BQ=BA′=5,
∴DQ=BD-BQ=
-5=
.
綜上所述,存在4組符合條件的點(diǎn)P、點(diǎn)Q,使△DPQ為等腰三角形;
DQ的長(zhǎng)度分別為3
-
、
、
-或
.