11.一個直三棱柱被一個平面截后剩余部分的三視圖如圖,則截去部分的體積與剩余部分的體積之比為(  )
A.1:2B.2:3C.4:5D.5:7

分析 由三視圖還原原圖形,作出圖形,分別利用柱體、臺體的體積公式運算求得答案.

解答 解:由三視圖還原原幾何體如圖:
截去的部分為五面體BB1C1CEF,剩余的部分為三棱臺ACB-A1EF,
由三視圖可知,原直三棱柱底面是邊長為2a的等腰直角三角形,
高為2a,
則原直三棱柱的體積為$\frac{1}{2}×2a×2a×2a=4{a}^{3}$,
三棱臺的上底面的面積為$\frac{1}{2}{a}^{2}$,下底面的面積為$\frac{1}{2}×2a×2a=2{a}^{2}$,
則三棱臺的體積為$\frac{1}{3}×2a(\frac{1}{2}{a}^{2}+\sqrt{\frac{1}{2}{a}^{2}×2{a}^{2}}+2{a}^{2})$=$\frac{7}{3}{a}^{3}$,
∴截去部分的體積為$4{a}^{3}-\frac{7}{3}{a}^{3}=\frac{5}{3}{a}^{3}$,
則截去部分的體積與剩余部分的體積之比為$\frac{\frac{5}{3}{a}^{3}}{\frac{7}{3}{a}^{3}}$=5:7.
故選:D.

點評 本題考查棱柱、棱錐、棱臺的體積,關(guān)鍵是由三視圖還原原圖形,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.在四棱錐S-ABCD中,為了推出AB⊥BC,需從下列條件:
①SB⊥面ABCD;②SC⊥CD;③CD∥面SAB;④BC⊥CD中選出部分條件,這些條件可能是( 。
A.②③B.①④C.②④D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=2$\sqrt{3}$sin$\frac{x}{2}$cos$\frac{x}{2}$-2cos2$\frac{x}{2}$.
(Ⅰ)求f($\frac{π}{3}$)的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞減區(qū)間及對稱軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知向量$\overrightarrow{a}$=($\sqrt{2}$sinx,$\frac{{\sqrt{2}}}{2}$(cosx+sinx)),$\overrightarrow$=(cosx,sinx-cosx),函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$.
(Ⅰ)求y=f(x)的單調(diào)遞增區(qū)間;
(Ⅱ)若將f(x)的圖象向左平移$\frac{π}{4}$個單位,再將各點的縱坐標(biāo)伸長為原來的2倍,橫坐標(biāo)不變,得到函數(shù)g(x)的圖象.寫出g(x)的解析式并在給定的坐標(biāo)系中畫出它在區(qū)間[0,π]上的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在如圖所示的多面體PMBCA中,平面PAC⊥平面ABC,△PAC是邊長為2的正三角形,PM∥BC,且BC=4,$AB=2\sqrt{5}$.
(1)求證:PA⊥BC;
(2)若多面體PMBCA的體積為$2\sqrt{3}$,求PM的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.甲、乙兩樓相距20米,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,求甲、乙兩樓的高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.(文) 已知數(shù)列{an}的前n項和為Sn,且an=$\frac{1}{(n+1)(n+2)}$,則S2015=$\frac{2015}{4034}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.?dāng)?shù)列{an}滿足a1=1,Sn=n,則a2012=( 。
A.1B.2010C.2011D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)a,b∈R,下列不等式中恒成立的是( 。
A.$a+\frac{1}{a}≥2$B.$\frac{a}+\frac{a}≥2$C.a2+b2>2abD.$\frac{{{a^2}+3}}{{\sqrt{{a^2}+2}}}>2$

查看答案和解析>>

同步練習(xí)冊答案