已知數(shù)列1,
1+2
2
,
1+2+3
3
,
1+2+3+4
4
,…,
1+2+3+…+(n-1)+n
n
,寫出它的通項(xiàng)an,并證明數(shù)列{an}是等差數(shù)列.
考點(diǎn):等差關(guān)系的確定,數(shù)列的概念及簡單表示法
專題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的前n項(xiàng)和公式化簡an=
1+2+3+…+(n-1)+n
n
,再代入an+1-an化簡后,即可證明結(jié)論.
解答: 證明:由題意得,an=
1+2+3+…+(n-1)+n
n
=
n(1+n)
2
n
=
n+1
2
,
所以an+1-an=
n+2
2
-
n+1
2
=
1
2

又a1=1,所以數(shù)列{an}是以1為首項(xiàng)、
1
2
為公差的等差數(shù)列.
點(diǎn)評(píng):本題考查等差數(shù)列的證明方法:定義法,以及等差數(shù)列的前n項(xiàng)和公式,難度不大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=3sin(2x+
π
6
)的最小正周期是( 。
A、2πB、πC、3D、3π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

sin135°=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求以O(shè)(0,0),A(2,0),B(0,4)為頂點(diǎn)的三角形OAB外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為了解甲、乙兩廠的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測量產(chǎn)品中的微量元素x,y的含量(單位:毫克)下表是乙廠的5件產(chǎn)品的測量數(shù)據(jù):
編號(hào)12345
x160178180172180
y7580777081
(1)已知甲廠生產(chǎn)的產(chǎn)品共有98件,求乙廠生產(chǎn)的產(chǎn)品數(shù)量;
(2)若x≥175且y≥75為優(yōu)等品,從乙廠抽出的上述5件產(chǎn)品中隨機(jī)抽取2件產(chǎn)品,求抽取的2件產(chǎn)品都是優(yōu)等品的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=
-x2+2x+3
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2+4x+p<0},B={x|x2-x-2>0},且A⊆B,求實(shí)數(shù)p的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)
1
1-i
+
3-2i
2+3i
在復(fù)平面內(nèi)對應(yīng)的點(diǎn)到原點(diǎn)的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,a1=
1
6
,an=
1
2
an-1+
1
2
×
1
3n
(n≥2)
(1)求證:數(shù)列{an+
1
3n
}是等比數(shù)列;
(2)求{an}的通項(xiàng)公式;
(3)設(shè)Sn是{an}的前n項(xiàng)和,求證:Sn
1
2

查看答案和解析>>

同步練習(xí)冊答案