12.若方程$\frac{x^2}{k}$+$\frac{y^2}{k-3}$=1表示雙曲線,則實(shí)數(shù)k的取值范圍為0<k<3.

分析 由方程$\frac{x^2}{k}$+$\frac{y^2}{k-3}$=1表示雙曲線得到k(k-3)<0,解出即可.

解答 解:∵方程$\frac{x^2}{k}$+$\frac{y^2}{k-3}$=1表示雙曲線,
∴k(k-3)<0,
解得0<k<3.
故答案是:0<k<3.

點(diǎn)評(píng) 本題考查了雙曲線的標(biāo)準(zhǔn)方程,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知全集U={1,2,3,4,5,6,7},集合A={1,3,5,7},則∁UA={2,4,6}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.f(x)=-x|x|+px.
(1)判斷函數(shù)的奇偶性;
(2)當(dāng)p=-2時(shí),判斷函數(shù)f(x)在(-∞,0)上單調(diào)性并加以證明;
(3)當(dāng)p=2時(shí),畫出函數(shù)的圖象并指出單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)y=$\sqrt{mx^2-mx+2}$的定義域?yàn)镽,則m的取值范圍是[0,8].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)是定義在R上的偶函數(shù),當(dāng)x≥0時(shí),f(x)=x2-2x-1.
(1)求f(x)的函數(shù)解析式;
(2)作出函數(shù)f(x)的簡(jiǎn)圖,寫出函數(shù)f(x)的單調(diào)減區(qū)間及最值.
(3)若關(guān)于x的方程f(x)=m有兩個(gè)解,試說出實(shí)數(shù)m的取值范圍.(只要寫出結(jié)果,不用給出證明過程)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知p:x2-8x-20≤0,q:(x-1+m)(x-1-m)≤0,(m>0),若q是p的必要不充分條件,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)集合A={1,0},集合B={2,3},集合M={x|x=b(a+b),a∈A,b∈B},則集合M的真子集的個(gè)數(shù)為(  )
A.7個(gè)B.12個(gè)C.16個(gè)D.15個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若函數(shù)f(x)=x3-mx2-x+5在區(qū)間(0,1)內(nèi)單調(diào)遞減,則實(shí)數(shù)m的取值范圍是[1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.已知點(diǎn)P(8m,3)是角α的終邊上一點(diǎn),且cosα=-$\frac{4}{5}$,則實(shí)數(shù)m=-$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案