【題目】已知橢圓的一個頂點為,離心率,直線交橢圓于、兩點.
(1)若直線的方程為,求弦的長;
(2)如果的重心恰好為橢圓的右焦點,求直線方程的一般式.
【答案】(1);(2)
【解析】
(1)由已知中橢圓的一個頂點為,離心率,根據(jù),,可求出橢圓的標(biāo)準(zhǔn)方程,進(jìn)而求直線的方程及弦長公式,得到弦的長;
(2)設(shè)線段的中點為,,結(jié)合(1)中結(jié)論,及的重心恰好為橢圓的右焦點,由重心坐標(biāo)公式,可得點坐標(biāo),由中點公式及,也在橢圓上,求出的斜率,可得直線方程.
解:(1)由已知橢圓的一個頂點為,
,
又離心率,
即,
,解得,
橢圓方程為;
由與聯(lián)立,
消去得,
,,
所求弦長;
(2)橢圓右焦點的坐標(biāo)為,
設(shè)線段的中點為,,
由三角形重心的性質(zhì)知,又,
,,,
故得,,
求得的坐標(biāo)為;
設(shè),,,,則,,
且,
以上兩式相減得,
,
故直線的方程為,即.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時,求證函數(shù)在上是增函數(shù).
(2)若函數(shù)在上有兩個不同的零點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中國古代十進(jìn)制的算籌計數(shù)法,在世界數(shù)學(xué)史上是一個偉大的創(chuàng)造. 算籌實際上是一根根同樣長短的小木棍,用算籌表示數(shù)1~9的方法如圖:例如:163可表示為“”,27可表示為“”.現(xiàn)有6根算籌,用來表示不能被10整除的兩位數(shù),算籌必須用完,則這樣的兩位數(shù)的個數(shù)為_________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰直角三角形ABC中,∠CAB=90°,AB=2,以AB為直徑在△ABC外作半圓O,P為半圓弧AB上的動點,點Q在斜邊BC上,若=,則的最小值為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列是各項都不為0的無窮數(shù)列,對任意的n≥3,n, 恒成立.
(1)如果,,成等差數(shù)列,求實數(shù)的值;
(2)已知=1.①求證:數(shù)列是等差數(shù)列;②已知數(shù)列中,.?dāng)?shù)列是公比為q的等比數(shù)列,滿足,,(i).求證:q是整數(shù),且數(shù)列中的任意一項都是數(shù)列中的項.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】正方形沿對角線折成直二面角,下列結(jié)論:①與所成的角為:②與所成的角為:③與面所成角的正弦值為:④二面角的平面角正切值是:其中正確結(jié)論的個數(shù)為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形所在平面,M是的中點,二面角的大小為.
(1)設(shè)l是平面與平面的交線,證明;
(2)在棱是否存在一點N,使為的二面角.若不存在,說明理由:若存在,求長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時,求證:若,則;
(2)當(dāng)時,試討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在長方體ABCD﹣A1B1C1D1中,AD=AA1=1,AB=2,點E在棱AB上移動.
(Ⅰ)求證:D1E⊥A1D;
(Ⅱ)在棱AB上是否存在點E使得AD1與平面D1EC成的角為?若存在,求出AE的長,若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com